metric / sql_utils.py
Elron's picture
Upload folder using huggingface_hub
64dd81e verified
raw
history blame
25.7 kB
import functools
import glob
import hashlib
import json
import os
import re
import sqlite3
import time
from abc import ABC, abstractmethod
from functools import lru_cache
from typing import Any, List, Optional
import requests
from huggingface_hub import snapshot_download
from requests.exceptions import ConnectionError, ReadTimeout
from .logging_utils import get_logger
from .types import SQLDatabase
logger = get_logger()
# Check if caching is enabled via environment variable
CACHE_LOCATION = os.getenv("UNITXT_CACHE_LOCATION")
# Set max cache size to 10GB or the value of env var MAX_CACHE_SIZE
MAX_CACHE_SIZE = os.getenv("MAX_CACHE_SIZE", 10 * 1024**3)
_cache_instance = None
class DatabaseConnector(ABC):
"""Abstract base class for database connectors."""
def __init__(self, db_config: SQLDatabase):
self.db_config = db_config
self.databases_folder = os.path.join(
os.environ.get("UNITXT_CACHE_LOCATION", "cache/text2sql"), "databases"
)
os.makedirs(self.databases_folder, exist_ok=True)
@abstractmethod
def get_table_schema(
self,
) -> str:
"""Abstract method to get database schema."""
pass
@abstractmethod
def execute_query(self, query: str) -> Any:
"""Abstract method to execute a query against the database."""
pass
@lru_cache(maxsize=128)
def execute_query_local(db_path: str, query: str) -> Any:
"""Executes a query against the SQLite database."""
conn = None # Initialize conn to None outside the try block
try:
conn = sqlite3.connect(db_path)
cursor = conn.cursor()
cursor.execute(query)
return cursor.fetchall(), None
except sqlite3.Error as e:
logger.info(f"Error executing SQL: {e}")
return None, f"Error executing SQL: {e}"
finally:
if conn:
conn.close()
class LocalSQLiteConnector(DatabaseConnector):
"""Database connector for SQLite databases."""
def __init__(self, db_config: SQLDatabase):
super().__init__(db_config)
db_id = self.db_config.get("db_id")
if not db_id:
raise ValueError("db_id is required for SQLiteConnector.")
self.db_path = self.get_db_file_path(db_id)
self.conn: sqlite3.Connection = sqlite3.connect(self.db_path)
self.cursor: sqlite3.Cursor = self.conn.cursor()
def download_database(self, db_id):
"""Downloads the database from huggingface if needed."""
done_file_path = os.path.join(self.databases_folder, "download_done")
if "bird/" in db_id:
if not os.path.exists(done_file_path):
snapshot_download(
repo_id="premai-io/birdbench",
repo_type="dataset",
local_dir=self.databases_folder,
force_download=False,
allow_patterns="*validation*",
)
open(os.path.join(self.databases_folder, "download_done"), "w").close()
else:
raise NotImplementedError(
f"current local db: {db_id} is not supported, only bird"
)
def get_db_file_path(self, db_id):
"""Gets the local path of a downloaded database file."""
self.download_database(db_id)
db_id = db_id.split("/")[-1]
db_file_pattern = os.path.join(self.databases_folder, "**", db_id + ".sqlite")
db_file_paths = glob.glob(db_file_pattern, recursive=True)
if not db_file_paths:
raise FileNotFoundError(f"Database file {db_id} not found.")
if len(db_file_paths) > 1:
raise FileExistsError(f"More than one files matched for {db_id}")
return db_file_paths[0]
def get_table_schema(
self,
) -> str:
"""Extracts schema from an SQLite database."""
self.cursor.execute("SELECT name FROM sqlite_master WHERE type='table'")
tables: list[tuple[str]] = self.cursor.fetchall()
schemas: dict[str, str] = {}
for table in tables:
if isinstance(table, tuple):
table = table[0]
if table == "sqlite_sequence":
continue
sql_query: str = (
f"SELECT sql FROM sqlite_master WHERE type='table' AND name='{table}';"
)
self.cursor.execute(sql_query)
schema_prompt: str = self.cursor.fetchone()[0]
schemas[table] = schema_prompt
schema_prompt: str = "\n\n".join(list(schemas.values()))
return schema_prompt
def execute_query(self, query: str) -> Any:
"""Executes a query against the SQLite database."""
return execute_query_local(self.db_path, query)
class InMemoryDatabaseConnector(DatabaseConnector):
"""Database connector for mocking databases with in-memory data structures."""
def __init__(self, db_config: SQLDatabase):
super().__init__(db_config)
self.tables = db_config.get("data", None)
if not self.tables:
raise ValueError("data is required for InMemoryDatabaseConnector.")
def get_table_schema(
self,
select_tables: Optional[List[str]] = None,
) -> str:
"""Generates a mock schema from the tables structure."""
schemas = {}
for table_name, table_data in self.tables.items():
if select_tables and table_name.lower() not in select_tables:
continue
columns = ", ".join([f"`{col}` TEXT" for col in table_data["columns"]])
schema = f"CREATE TABLE `{table_name}` ({columns});"
schemas[table_name] = schema
return "\n\n".join(list(schemas.values()))
def execute_query(self, query: str) -> Any:
"""Simulates executing a query against the mock database."""
# Initialize in-memory database from the 'tables' dictionary
conn = sqlite3.connect(":memory:")
cursor = conn.cursor()
logger.debug("Running SQL query over in-memory DB")
# Create tables and insert data from the 'db' dictionary
for table_name, table_data in self.tables.items():
columns = table_data["columns"]
rows = table_data["rows"]
# Create table
cursor.execute(f"CREATE TABLE {table_name} ({', '.join(columns)})")
# Insert data
placeholders = ", ".join(["?"] * len(columns))
cursor.executemany(
f"INSERT INTO {table_name} VALUES ({placeholders})", rows
)
try:
cursor.execute(query)
return cursor.fetchall(), None
except sqlite3.Error as e:
logger.info(f"Error executing SQL: {e}")
return None, f"Error executing SQL: {e}"
finally:
conn.close()
def get_cache():
"""Returns a singleton cache instance, initializing it if necessary."""
global _cache_instance
if _cache_instance is None:
_cache_instance = Cache()
return _cache_instance
def generate_cache_key(*args, **kwargs):
"""Generate a stable hashable cache key for various input types.
:param args: Positional arguments of the function.
:param kwargs: Keyword arguments of the function.
:return: A hashed key as a string.
"""
try:
# Convert args and kwargs to a JSON string (sorted to ensure consistency)
serialized = json.dumps(
{"args": args, "kwargs": kwargs}, sort_keys=True, default=str
)
except TypeError:
# Fallback for non-serializable objects
serialized = repr((args, kwargs))
# Hash the serialized data
return hashlib.md5(serialized.encode()).hexdigest()
class Cache:
"""A class that provides disk-based caching functionality for a given function."""
def __init__(self):
"""Initializes the cache.
If `CACHE_LOCATION` (os.getenv("UNITXT_CACHE_LOCATION") is set, a disk-based
cache is created using `diskcache`.
Args:
None
Returns:
None
"""
if CACHE_LOCATION:
try:
import diskcache
# Ensure the cache directory exists
os.makedirs(CACHE_LOCATION, exist_ok=True)
# Create a global diskcache Cache instance
self.cache = diskcache.Cache(CACHE_LOCATION, size_limit=MAX_CACHE_SIZE)
logger.info(f"Caching enabled at {CACHE_LOCATION}")
except ImportError as e:
raise ImportError(
"UNITXT_CACHE_LOCATION is set, but diskcache is not installed.\n"
"Please install diskcache `pip install diskcache` "
"or unset UNITXT_CACHE_LOCATION."
) from e
else:
self.cache = None # Disable caching
def get_or_set(self, key, compute_fn, no_cache=False, refresh=False):
if not self.cache or no_cache:
logger.info(f"Bypassing cache for key: {key}")
return compute_fn()
if refresh and key in self.cache:
logger.info(f"Refreshing cache for key: {key}")
del self.cache[key]
if key in self.cache:
logger.info(f"Cache hit for key: {key}")
return self.cache[key]
logger.info(f"Cache miss for key: {key}. Computing value...")
result = compute_fn()
if result and not (
isinstance(result, tuple) and len(result) == 2 and result[0] is None
):
self.cache[key] = result
logger.info(f"Stored result in cache for key: {key}")
else:
logger.info(f"None result. Bypassing caching for key: {key}")
return result
async def async_get_or_set(self, key, compute_fn, no_cache=False, refresh=False):
if not self.cache or no_cache:
logger.info(f"Bypassing cache for key: {key}")
return await compute_fn()
if refresh and key in self.cache:
logger.info(f"Refreshing cache for key: {key}")
del self.cache[key]
if key in self.cache:
logger.info(f"Cache hit for key: {key}")
return self.cache[key]
logger.info(f"Cache miss for key: {key}. Computing value asynchronously...")
result = await compute_fn()
self.cache[key] = result
logger.info(f"Stored result in cache for key: {key}")
return result
def memoize(self, key_func=generate_cache_key, no_cache=False, refresh=False):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
if not self.cache or no_cache:
logger.info(f"Bypassing cache for function: {func.__name__}")
return func(*args, **kwargs)
key = key_func(func.__name__, *args, **kwargs)
if refresh and key in self.cache:
logger.info(
f"Refreshing cache for function: {func.__name__}, key: {key}"
)
del self.cache[key]
if key in self.cache:
logger.info(f"Cache hit for function: {func.__name__}, key: {key}")
return self.cache[key]
logger.info(
f"Cache miss for function: {func.__name__}, key: {key}. Computing value..."
)
result = func(*args, **kwargs)
self.cache[key] = result
logger.info(
f"Stored result in cache for function: {func.__name__}, key: {key}"
)
return result
return wrapper
return decorator
def async_memoize(self, key_func=generate_cache_key, no_cache=False, refresh=False):
def decorator(func):
@functools.wraps(func)
async def wrapper(*args, **kwargs):
if no_cache:
logger.info(f"Bypassing cache for async function: {func.__name__}")
return await func(*args, **kwargs)
key = key_func(func.__name__, *args, **kwargs)
if refresh and key in self.cache:
logger.info(
f"Refreshing cache for async function: {func.__name__}, key: {key}"
)
del self.cache[key]
if key in self.cache:
logger.info(
f"Cache hit for async function: {func.__name__}, key: {key}"
)
return self.cache[key]
logger.info(
f"Cache miss for async function: {func.__name__}, key: {key}. Computing value..."
)
result = await func(*args, **kwargs)
self.cache[key] = result
logger.info(
f"Stored result in cache for async function: {func.__name__}, key: {key}"
)
return result
return wrapper
return decorator
@lru_cache(maxsize=128)
def execute_query_remote(
api_url: str,
database_id: str,
api_key: str,
query: str,
retryable_exceptions: tuple = (ConnectionError, ReadTimeout),
max_retries: int = 3,
retry_delay: int = 5, # seconds
timeout: int = 30, # seconds
) -> (Optional[dict], str):
"""Executes a query against the remote database, with retries for certain exceptions."""
headers = {
"Content-Type": "application/json",
"accept": "application/json",
"Authorization": f"Bearer {api_key}",
}
retries = 0
while retries <= max_retries:
try:
response = requests.post(
f"{api_url}/sql",
headers=headers,
json={"sql": query, "dataSourceId": database_id},
verify=False,
timeout=timeout,
)
response.raise_for_status()
return response.json(), None
except retryable_exceptions as e:
retries += 1
logger.warning(
f"Attempt {retries} failed with error: {e}. Retrying in {retry_delay} seconds."
)
if retries <= max_retries:
time.sleep(retry_delay)
else:
logger.error(f"Max retries ({max_retries}) exceeded for query: {query}")
return (
None,
f"Max retries ({max_retries}) exceeded for query: {query} - Error: {e!s}",
)
except requests.exceptions.HTTPError as e:
if e.response.status_code >= 500:
retries += 1
logger.warning(
f"Server error, attempt {retries} failed with error: {e}. Retrying in {retry_delay} seconds."
)
if retries <= max_retries:
time.sleep(retry_delay)
else:
logger.error(
f"Max retries ({max_retries}) exceeded for query: {query}"
)
return (
None,
f"Max retries ({max_retries}) exceeded for query: {query} - Error: {e!s}",
)
else:
logger.error(f"HTTP Error on attempt {retries}: {e}")
return (
None,
f"HTTP Error on attempt {retries}: {e}",
)
except Exception as e:
logger.error(f"Unexpected error on attempt {retries}: {e}")
return (None, f"Unexpected error on attempt {retries}: {e}")
return None, "Unknown Error in SQL execution"
class RemoteDatabaseConnector(DatabaseConnector):
"""Database connector for remote databases accessed via HTTP."""
def __init__(self, db_config: SQLDatabase):
super().__init__(db_config)
assert db_config[
"db_id"
], "db_id must be in db_config for RemoteDatabaseConnector"
self.api_url, self.database_id = (
db_config["db_id"].split(",")[0],
db_config["db_id"].split("db_id=")[-1].split(",")[0],
)
if not self.api_url or not self.database_id:
raise ValueError(
"Both 'api_url' and 'database_id' are required for RemoteDatabaseConnector."
)
self.api_key = os.getenv("SQL_API_KEY", None)
if not self.api_key:
raise ValueError(
"The environment variable 'SQL_API_KEY' must be set to use the RemoteDatabaseConnector."
)
self.headers = {
"Content-Type": "application/json",
"accept": "application/json",
"Authorization": f"Bearer {self.api_key}",
}
self.timeout = 30
def get_table_schema(
self,
) -> str:
"""Retrieves the schema of a database."""
cur_api_url = f"{self.api_url}/datasources/{self.database_id}"
response = requests.get(
cur_api_url,
headers=self.headers,
verify=False,
timeout=self.timeout,
)
if response.status_code == 200:
schema = response.json()["schema"]
else:
raise OSError(f"Could not fetch schema from {cur_api_url}")
schema_text = ""
for table in schema["tables"]:
schema_text += f"Table: {table['name'] if 'name' in table else table['table_name']} has columns: {[col['name'] if 'name' in col else col['column_name'] for col in table['columns']]}\n"
return schema_text
def execute_query(self, query: str) -> Any:
"""Executes a query against the remote database, with retries for certain exceptions."""
cache = get_cache()
cache_key = generate_cache_key(
"sql_request", self.api_url, self.database_id, query
)
return cache.get_or_set(
cache_key,
lambda: execute_query_remote(
api_url=self.api_url,
database_id=self.database_id,
api_key=self.api_key,
query=query,
timeout=self.timeout,
),
)
def get_db_connector(db_type: str):
"""Creates and returns the appropriate DatabaseConnector instance based on db_type."""
if db_type == "local":
connector = LocalSQLiteConnector
elif db_type == "in_memory":
connector = InMemoryDatabaseConnector
elif db_type == "remote":
connector = RemoteDatabaseConnector
else:
raise ValueError(f"Unsupported database type: {db_type}")
return connector
def is_sqlglot_parsable(sql: str, db_type="sqlite") -> bool:
"""Returns True if sqlglot does not encounter any error, False otherwise."""
from sqlglot import parse
if not sql.strip():
return False
if db_type == "db2":
db_type = "postgres" ## TODO: temporary until sqlglot adds support for db2
try:
parse(sql, read=db_type)
return True
except Exception as e:
logger.debug(f"SQL query could not parse: {e}")
return False
def is_sqlparse_parsable(sql: str) -> bool:
"""Returns True if sqlparse does not encounter any error, False otherwise."""
from sqlparse import parse
from sqlparse.tokens import Error
if not sql.strip():
return False
try:
statements = parse(sql)
for statement in statements:
for token in statement.tokens:
if token.ttype == Error:
return False
return True
except Exception as e:
logger.debug(f"SQL query could not parse: {e}")
return False
def sqlglot_optimized_equivalence(expected: str, generated: str) -> int:
"""Checks if SQL queries are equivalent using SQLGlot parsing, so we don't run them."""
from sqlglot import diff, parse_one
from sqlglot.optimizer import optimize
try:
t_diff = diff(
optimize(parse_one(expected.lower()).sql(pretty=True)),
optimize(parse_one(generated.lower()).sql(pretty=True)),
)
sql_diff = sum(0 if (e.__class__.__name__ == "Keep") else 1 for e in t_diff)
return 1 if sql_diff == 0 else 0
except Exception as e:
logger.debug(f"Error parsing SQL for comparison: {e}")
return False
def extract_select_columns(statement):
"""Parse SQL using sqlparse and extract columns."""
from sqlparse.sql import Identifier, IdentifierList
from sqlparse.tokens import DML, Keyword
columns = []
select_seen = False
for token in statement.tokens:
if token.ttype is DML and token.value.upper() == "SELECT":
select_seen = True
continue
if select_seen:
if token.ttype is Keyword and token.value.upper() in (
"FROM",
"WHERE",
"GROUP",
"HAVING",
"ORDER",
"LIMIT",
):
break
if isinstance(token, IdentifierList):
for identifier in token.get_identifiers():
columns.append(strip_alias(identifier.value))
elif isinstance(token, Identifier):
columns.append(strip_alias(token.value))
else:
val = token.value.strip()
if val:
columns.append(strip_alias(val))
return frozenset(columns)
def strip_alias(col: str) -> str:
"""Remove any AS alias from a column."""
col = col.strip()
upper = col.upper()
if " AS " in upper:
return col[: upper.index(" AS ")].strip()
parts_alias = col.split()
if len(parts_alias) > 1:
return " ".join(parts_alias[:-1])
return col
def collect_clause(statement, clause_keyword):
"""Parse SQL statement and collect clauses."""
from sqlparse.tokens import Keyword
found = False
collected = []
for token in statement.tokens:
tvalue = token.value.upper()
if token.ttype is Keyword:
if tvalue.startswith(clause_keyword):
found = True
continue
if found and tvalue in (
"FROM",
"WHERE",
"GROUP",
"HAVING",
"ORDER",
"LIMIT",
):
break
if found:
collected.append(token.value)
return " ".join(collected).strip()
def extract_select_info(sql: str):
"""Parse SQL using sqlparse and return a dict of extracted columns and clauses."""
from sqlparse import parse
from sqlparse.tokens import DML
statements = parse(sql)
if len(statements) != 1:
return None
stmt = statements[0]
if not any(t.ttype is DML and t.value.upper() == "SELECT" for t in stmt.tokens):
return None
parts = {
"columns": None,
"from": "",
"where": "",
"group": "",
"having": "",
"order": "",
}
columns = extract_select_columns(stmt)
if not columns:
columns = frozenset()
parts["columns"] = columns
parts["from"] = collect_clause(stmt, "FROM")
parts["where"] = collect_clause(stmt, "WHERE")
parts["group"] = collect_clause(stmt, "GROUP")
parts["having"] = collect_clause(stmt, "HAVING")
parts["order"] = collect_clause(stmt, "ORDER")
return parts
def sqlparse_queries_equivalent(sql1: str, sql2: str) -> bool:
"""Return True if both SQL queries are naively considered equivalent."""
try:
info1 = extract_select_info(sql1)
info2 = extract_select_info(sql2)
if not info1 or not info2:
return False
if info1["columns"] != info2["columns"]:
return False
for k in ["from", "where", "group", "having", "order"]:
if info1[k].replace(" ", "").upper() != info2[k].replace(" ", "").upper():
return False
return True
except Exception as e:
logger.debug(f"Errpr parsing SQL query for comparison: {e}")
return False
def sqlglot_parsed_queries_equivalent(sql1: str, sql2: str, dialect: str = "") -> bool:
from sqlglot import exp, parse_one
try:
ast1 = parse_one(sql1, read=dialect)
ast2 = parse_one(sql2, read=dialect)
except:
return False
if not (isinstance(ast1, exp.Select) and isinstance(ast2, exp.Select)):
return False
def normalized_select_columns(select_expr: exp.Select):
cols = []
for item in select_expr.expressions:
copy_item = item.copy()
copy_item.set("alias", None)
cols.append(copy_item.sql(dialect=dialect, normalize=True))
return frozenset(cols)
if normalized_select_columns(ast1) != normalized_select_columns(ast2):
return False
def normalized_clause(expr: exp.Expression, key: str):
clause = expr.args.get(key)
return clause.sql(dialect=dialect, normalize=True) if clause else ""
for clause_key in ("from", "where", "group", "having", "order"):
if normalized_clause(ast1, clause_key) != normalized_clause(ast2, clause_key):
return False
return True
def sql_exact_match(sql1: str, sql2: str) -> bool:
"""Return True if two SQL strings match after very basic normalization."""
def normalize_sql(s: str) -> str:
s = s.strip().rstrip(";")
s = re.sub(r"\s+", " ", s)
return s.upper()
return normalize_sql(sql1) == normalize_sql(sql2)