Upload metrics.py with huggingface_hub
Browse files- metrics.py +141 -0
metrics.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .stream import Stream
|
| 2 |
+
from .operator import SingleStreamOperator, StreamInstanceOperator
|
| 3 |
+
from dataclasses import dataclass, field
|
| 4 |
+
from abc import abstractmethod, ABC
|
| 5 |
+
|
| 6 |
+
from typing import List, Dict, Any
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def absrtact_factory():
|
| 10 |
+
return {}
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def abstract_field():
|
| 14 |
+
return field(default_factory=absrtact_factory)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class UpdateStream(StreamInstanceOperator):
|
| 18 |
+
update: dict
|
| 19 |
+
|
| 20 |
+
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
|
| 21 |
+
instance.update(self.update)
|
| 22 |
+
return instance
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class Metric(ABC):
|
| 26 |
+
@property
|
| 27 |
+
@abstractmethod
|
| 28 |
+
def main_score(self):
|
| 29 |
+
pass
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class GlobalMetric(SingleStreamOperator, Metric):
|
| 33 |
+
def process(self, stream: Stream):
|
| 34 |
+
references = []
|
| 35 |
+
predictions = []
|
| 36 |
+
global_score = {}
|
| 37 |
+
|
| 38 |
+
instances = []
|
| 39 |
+
|
| 40 |
+
for instance in stream:
|
| 41 |
+
if "score" not in instance:
|
| 42 |
+
instance["score"] = {"global": global_score, "instance": {}}
|
| 43 |
+
else:
|
| 44 |
+
global_score = instance["score"]["global"]
|
| 45 |
+
|
| 46 |
+
refs, pred = instance["references"], instance["prediction"]
|
| 47 |
+
|
| 48 |
+
instance_score = self._compute([refs], [pred])
|
| 49 |
+
instance["score"]["instance"].update(instance_score)
|
| 50 |
+
|
| 51 |
+
references.append(refs)
|
| 52 |
+
predictions.append(pred)
|
| 53 |
+
instances.append(instance)
|
| 54 |
+
|
| 55 |
+
result = self._compute(references, predictions)
|
| 56 |
+
|
| 57 |
+
global_score.update(result)
|
| 58 |
+
|
| 59 |
+
for instance in instances:
|
| 60 |
+
instance["score"]["global"] = global_score
|
| 61 |
+
yield instance
|
| 62 |
+
|
| 63 |
+
def _compute(self, references: List[List[str]], predictions: List[str]) -> dict:
|
| 64 |
+
result = self.compute(references, predictions)
|
| 65 |
+
result["score"] = result[self.main_score]
|
| 66 |
+
return result
|
| 67 |
+
|
| 68 |
+
@abstractmethod
|
| 69 |
+
def compute(self, references: List[List[str]], predictions: List[str]) -> dict:
|
| 70 |
+
pass
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
class InstanceMetric(SingleStreamOperator, Metric):
|
| 74 |
+
implemented_reductions: List[str] = field(default_factory=lambda: ["mean"])
|
| 75 |
+
|
| 76 |
+
@property
|
| 77 |
+
@abstractmethod
|
| 78 |
+
def reduction_map(self) -> dict:
|
| 79 |
+
pass
|
| 80 |
+
|
| 81 |
+
def process(self, stream: Stream):
|
| 82 |
+
global_score = {}
|
| 83 |
+
instances = []
|
| 84 |
+
|
| 85 |
+
for instance in stream:
|
| 86 |
+
refs, pred = instance["references"], instance["prediction"]
|
| 87 |
+
|
| 88 |
+
instance_score = self._compute(refs, pred)
|
| 89 |
+
|
| 90 |
+
if "score" not in instance:
|
| 91 |
+
instance["score"] = {"global": global_score, "instance": {}}
|
| 92 |
+
else:
|
| 93 |
+
global_score = instance["score"]["global"]
|
| 94 |
+
|
| 95 |
+
instance["score"]["instance"].update(instance_score)
|
| 96 |
+
|
| 97 |
+
instances.append(instance)
|
| 98 |
+
|
| 99 |
+
for reduction, fields in self.reduction_map.items():
|
| 100 |
+
assert (
|
| 101 |
+
reduction in self.implemented_reductions
|
| 102 |
+
), f"Reduction {reduction} is not implemented, use one of {self.implemented_reductions}"
|
| 103 |
+
|
| 104 |
+
if reduction == "mean":
|
| 105 |
+
from statistics import mean
|
| 106 |
+
|
| 107 |
+
for field in fields:
|
| 108 |
+
global_score[field] = mean([instance["score"]["instance"][field] for instance in instances])
|
| 109 |
+
if field == self.main_score:
|
| 110 |
+
global_score["score"] = global_score[field]
|
| 111 |
+
|
| 112 |
+
for instance in instances:
|
| 113 |
+
yield instance
|
| 114 |
+
|
| 115 |
+
def _compute(self, references: List[List[str]], predictions: List[str]) -> dict:
|
| 116 |
+
result = self.compute(references, predictions)
|
| 117 |
+
result["score"] = result[self.main_score]
|
| 118 |
+
return result
|
| 119 |
+
|
| 120 |
+
@abstractmethod
|
| 121 |
+
def compute(self, references: List[str], prediction: str) -> dict:
|
| 122 |
+
pass
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
class SingleReferenceInstanceMetric(InstanceMetric):
|
| 126 |
+
def _compute(self, references: List[str], prediction: str) -> dict:
|
| 127 |
+
result = self.compute(references[0], prediction)
|
| 128 |
+
result["score"] = result[self.main_score]
|
| 129 |
+
return result
|
| 130 |
+
|
| 131 |
+
@abstractmethod
|
| 132 |
+
def compute(self, reference, prediction: str) -> dict:
|
| 133 |
+
pass
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
class Accuracy(SingleReferenceInstanceMetric):
|
| 137 |
+
reduction_map = {"mean": ["accuracy"]}
|
| 138 |
+
main_score = "accuracy"
|
| 139 |
+
|
| 140 |
+
def compute(self, reference, prediction: str) -> dict:
|
| 141 |
+
return {"accuracy": float(str(reference) == str(prediction))}
|