Spaces:
Runtime error
Runtime error
First commit
Browse files- README.md +7 -6
- app.py +92 -0
- document.png +0 -0
- requirements.txt +7 -0
- rsz_unstructured_logo.png +0 -0
README.md
CHANGED
|
@@ -1,13 +1,14 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: green
|
| 5 |
-
colorTo:
|
| 6 |
sdk: streamlit
|
| 7 |
-
sdk_version: 1.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
-
license:
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Ved Fine Tuned
|
| 3 |
+
emoji: 🦀
|
| 4 |
colorFrom: green
|
| 5 |
+
colorTo: blue
|
| 6 |
sdk: streamlit
|
| 7 |
+
sdk_version: 1.19.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: other
|
| 11 |
+
duplicated_from: unstructuredio/ved-pre-trained
|
| 12 |
---
|
| 13 |
|
| 14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import torch
|
| 3 |
+
from torch import nn
|
| 4 |
+
import streamlit as st
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from io import BytesIO
|
| 9 |
+
from transformers import VisionEncoderDecoderModel, VisionEncoderDecoderConfig, DonutProcessor, DonutImageProcessor, AutoTokenizer
|
| 10 |
+
|
| 11 |
+
def run_prediction(sample, model, processor):
|
| 12 |
+
|
| 13 |
+
pixel_values = processor(np.array(
|
| 14 |
+
sample,
|
| 15 |
+
np.float32,
|
| 16 |
+
), return_tensors="pt").pixel_values
|
| 17 |
+
|
| 18 |
+
with torch.no_grad():
|
| 19 |
+
outputs = model.generate(
|
| 20 |
+
pixel_values.to(device),
|
| 21 |
+
decoder_input_ids=processor.tokenizer("<s><s_plain>", add_special_tokens=False, return_tensors="pt").input_ids.to(device),
|
| 22 |
+
do_sample=True,
|
| 23 |
+
top_p=0.92,
|
| 24 |
+
top_k=5,
|
| 25 |
+
no_repeat_ngram_size=10,
|
| 26 |
+
num_beams=3
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
# process output
|
| 30 |
+
prediction = processor.batch_decode(outputs)[0]
|
| 31 |
+
print(prediction)
|
| 32 |
+
|
| 33 |
+
return prediction
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
logo = Image.open("./rsz_unstructured_logo.png")
|
| 37 |
+
st.image(logo)
|
| 38 |
+
|
| 39 |
+
st.markdown('''
|
| 40 |
+
### Chipper
|
| 41 |
+
Chipper is an OCR-free Document Understanding Transformer. It was pre-trained with over 1M documents from public sources and fine-tuned on a large range of documents.
|
| 42 |
+
|
| 43 |
+
At [Unstructured.io](https://github.com/Unstructured-IO/unstructured) we are on a mission to build custom preprocessing pipelines for labeling, training, or production ML-ready pipelines.
|
| 44 |
+
Come and join us in our public repos and contribute! Each of your contributions and feedback holds great value and is very significant to the community.
|
| 45 |
+
''')
|
| 46 |
+
|
| 47 |
+
image_upload = None
|
| 48 |
+
photo = None
|
| 49 |
+
with st.sidebar:
|
| 50 |
+
# file upload
|
| 51 |
+
uploaded_file = st.file_uploader("Upload a document")
|
| 52 |
+
if uploaded_file is not None:
|
| 53 |
+
# To read file as bytes:
|
| 54 |
+
image_bytes_data = uploaded_file.getvalue()
|
| 55 |
+
image_upload = Image.open(BytesIO(image_bytes_data))
|
| 56 |
+
|
| 57 |
+
if image_upload:
|
| 58 |
+
image = image_upload
|
| 59 |
+
else:
|
| 60 |
+
image = Image.open(f"./document.png")
|
| 61 |
+
|
| 62 |
+
st.image(image, caption='Your target document')
|
| 63 |
+
|
| 64 |
+
with st.spinner(f'Processing the document ...'):
|
| 65 |
+
pre_trained_model = "unstructuredio/chipper-fast-fine-tuning"
|
| 66 |
+
processor = DonutProcessor.from_pretrained(pre_trained_model)
|
| 67 |
+
model = VisionEncoderDecoderModel.from_pretrained(pre_trained_model)
|
| 68 |
+
|
| 69 |
+
from huggingface_hub import hf_hub_download
|
| 70 |
+
|
| 71 |
+
lm_head_file = hf_hub_download(
|
| 72 |
+
repo_id=pre_trained_model, filename="lm_head.pth"
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
rank = 128
|
| 76 |
+
model.decoder.lm_head = nn.Sequential(
|
| 77 |
+
nn.Linear(model.decoder.lm_head.weight.shape[1], rank, bias=False),
|
| 78 |
+
nn.Linear(rank, rank, bias=False),
|
| 79 |
+
nn.Linear(rank, model.decoder.lm_head.weight.shape[0], bias=True),
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
model.decoder.lm_head.load_state_dict(torch.load(lm_head_file))
|
| 83 |
+
|
| 84 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 85 |
+
|
| 86 |
+
model.eval()
|
| 87 |
+
model.to(device)
|
| 88 |
+
|
| 89 |
+
st.info(f'Parsing document')
|
| 90 |
+
parsed_info = run_prediction(image.convert("RGB"), model, processor)
|
| 91 |
+
st.text(f'\nDocument:')
|
| 92 |
+
st.text_area('Output text', value=parsed_info, height=800)
|
document.png
ADDED
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
altair<5
|
| 2 |
+
huggingface_hub
|
| 3 |
+
numpy
|
| 4 |
+
opencv-python
|
| 5 |
+
streamlit
|
| 6 |
+
torch==1.13.1
|
| 7 |
+
transformers
|
rsz_unstructured_logo.png
ADDED
|