File size: 1,335 Bytes
3ff10a0
ab3f808
a4fcc7e
559ec57
24d3233
b9cfa97
9e95b47
24d3233
0a761bc
93eec9d
e6ac0b5
 
56d3554
 
0e74aec
 
 
ade45a8
c357975
d9ef855
c88e892
d9ef855
b648bce
d9ef855
 
 
c70f16d
d9ef855
edb8459
d9ef855
a4fcc7e
d365b80
98224c2
cd13712
41739ba
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import tensorflow as tf
from keras.models import load_model
import gradio as gr
from matplotlib import pyplot as plt
import cv2
import numpy as np
model = load_model('eee.keras')

def image_mod(image):
    raw_image = image
    temp_image = "temporary_image.jpg"
    cv2.imwrite(temp_image, raw_image)
    
    img = cv2.imread("temporary_image.jpg")
    resize = tf.image.resize(img, (256, 256))
    plt.imshow(resize.numpy().astype(int))
    yhat = model.predict(np.expand_dims(resize,0))
    display = np.argmax(yhat)
    display = str(display)
    if display == "0":
        message = "Rainy" # Jida,_Zhuhai,_rainy_day.jpg
    if display == "1":
        message = "Foggy" # Morning_fog_-_Flickr_-_tmoravec.jpg
    if display == "2":
        message = "Cloudy"
    if display == "3":
        message = "Snowy" #Snow_on_Branches,_Beechview,_2020-12-17,_01.jpg
    if display == "4":
        message = "Sunny" # Daedalus_000355_171913_516869_4578_(36155269413).jpg
    return message

gr.Interface(fn=image_mod,
             inputs=gr.Image(shape=(256, 256)),
             outputs=gr.Label(num_top_classes=3),
             examples=["Daedalus_000355_171913_516869_4578_(36155269413).jpg","Stuyvesant_Fish_House_25_E78_St_cloudy_jeh.jpg","Morning_fog_-_Flickr_-_tmoravec.jpg","Jida,_Zhuhai,_rainy_day.jpg","Snowy_Nashua.jpg"]).launch()