Spaces:
Runtime error
Runtime error
| from fastapi import FastAPI, HTTPException | |
| from pydantic import BaseModel | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import torch | |
| # Load the model and tokenizer | |
| MODEL_NAME = "deepseek-ai/DeepSeek-V3-Base" # Change to the model you want | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_NAME, | |
| device_map="auto", | |
| trust_remote_code=True, # Allow execution of custom code | |
| low_cpu_mem_usage=True # Ensures reduced memory usage | |
| ).to(device) | |
| app = FastAPI() | |
| class Query(BaseModel): | |
| input_text: str | |
| async def predict(query: Query): | |
| input_text = query.input_text | |
| if not input_text: | |
| raise HTTPException(status_code=400, detail="Input text cannot be empty.") | |
| inputs = tokenizer(input_text, return_tensors="pt").to(device) | |
| outputs = model.generate(inputs["input_ids"], max_new_tokens=50, temperature=0.7) | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return {"response": response} | |