Spaces:
Build error
Build error
File size: 34,811 Bytes
7c711a3 c92b527 7c711a3 c92b527 7c711a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 |
import os
import re
import numpy as np
import gc
import torch
import time
import shutil
import hashlib
import pickle
import traceback
from typing import List, Dict, Any, Tuple, Optional, Union, Generator
from dataclasses import dataclass
import gradio as gr
# Import dependencies (no need for pip install commands)
import fitz # PyMuPDF
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from llama_cpp import Llama
from rank_bm25 import BM25Okapi
import nltk
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from huggingface_hub import hf_hub_download
# Download nltk resources
try:
nltk.download('punkt', quiet=True)
nltk.download('stopwords', quiet=True)
except:
print("Failed to download NLTK resources, continuing without them")
# Setup directories for Spaces
os.makedirs("pdfs", exist_ok=True)
os.makedirs("models", exist_ok=True)
os.makedirs("pdf_cache", exist_ok=True)
# Download nltk resources
try:
nltk.download('punkt', quiet=True)
nltk.download('stopwords', quiet=True)
except:
print("Failed to download NLTK resources, continuing without them")
# Download model from Hugging Face Hub
model_path = hf_hub_download(
repo_id="TheBloke/phi-2-GGUF",
filename="phi-2.Q8_0.gguf",
repo_type="model",
local_dir="models"
)
# === MEMORY MANAGEMENT UTILITIES ===
def clear_memory():
"""Clear memory to prevent OOM errors"""
gc.collect()
torch.cuda.empty_cache() if torch.cuda.is_available() else None
# === PDF PROCESSING ===
@dataclass
class PDFChunk:
"""Class to represent a chunk of text extracted from a PDF"""
text: str
source: str
page_num: int
chunk_id: int
class PDFProcessor:
def __init__(self, pdf_dir: str = "pdfs"):
"""Initialize PDF processor
Args:
pdf_dir: Directory containing PDF files
"""
self.pdf_dir = pdf_dir
# Smaller chunk size with more overlap for better retrieval
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=384,
chunk_overlap=288, # 75% overlap for better context preservation
length_function=len,
is_separator_regex=False,
)
# Create cache directory
self.cache_dir = os.path.join(os.getcwd(), "pdf_cache")
os.makedirs(self.cache_dir, exist_ok=True)
def list_pdfs(self) -> List[str]:
"""List all PDF files in the directory"""
if not os.path.exists(self.pdf_dir):
return []
return [f for f in os.listdir(self.pdf_dir) if f.lower().endswith('.pdf')]
def _get_cache_path(self, pdf_path: str) -> str:
"""Get the cache file path for a PDF"""
pdf_hash = hashlib.md5(open(pdf_path, 'rb').read(8192)).hexdigest()
return os.path.join(self.cache_dir, f"{os.path.basename(pdf_path)}_{pdf_hash}.pkl")
def _is_cached(self, pdf_path: str) -> bool:
"""Check if a PDF is cached"""
cache_path = self._get_cache_path(pdf_path)
return os.path.exists(cache_path)
def _load_from_cache(self, pdf_path: str) -> List[PDFChunk]:
"""Load chunks from cache"""
cache_path = self._get_cache_path(pdf_path)
try:
with open(cache_path, 'rb') as f:
return pickle.load(f)
except:
return None
def _save_to_cache(self, pdf_path: str, chunks: List[PDFChunk]) -> None:
"""Save chunks to cache"""
cache_path = self._get_cache_path(pdf_path)
try:
with open(cache_path, 'wb') as f:
pickle.dump(chunks, f)
except Exception as e:
print(f"Warning: Failed to cache PDF {pdf_path}: {str(e)}")
def clean_text(self, text: str) -> str:
"""Clean extracted text"""
# Remove excessive whitespace
text = re.sub(r'\s+', ' ', text).strip()
# Remove header/footer patterns (common in PDFs)
text = re.sub(r'(?<!\w)page \d+(?!\w)', '', text, flags=re.IGNORECASE)
return text
def extract_text_from_pdf(self, pdf_path: str) -> List[PDFChunk]:
"""Extract text content from a PDF file with improved extraction
Args:
pdf_path: Path to the PDF file
Returns:
List of PDFChunk objects extracted from the PDF
"""
# Check cache first
if self._is_cached(pdf_path):
cached_chunks = self._load_from_cache(pdf_path)
if cached_chunks:
print(f"Loaded {len(cached_chunks)} chunks from cache for {os.path.basename(pdf_path)}")
return cached_chunks
try:
doc = fitz.open(pdf_path)
pdf_chunks = []
pdf_name = os.path.basename(pdf_path)
for page_num in range(len(doc)):
page = doc.load_page(page_num)
# Extract text with more options for better quality
page_text = page.get_text("text", sort=True)
# Try to extract text with alternative layout analysis if the text is too short
if len(page_text) < 100:
try:
page_text = page.get_text("dict", sort=True)
# Convert dict to text
if isinstance(page_text, dict) and "blocks" in page_text:
extracted_text = ""
for block in page_text["blocks"]:
if "lines" in block:
for line in block["lines"]:
if "spans" in line:
for span in line["spans"]:
if "text" in span:
extracted_text += span["text"] + " "
page_text = extracted_text
except:
# Fallback to default extraction
page_text = page.get_text("text")
# Clean the text
page_text = self.clean_text(page_text)
# Extract tables
try:
tables = page.find_tables()
if tables and hasattr(tables, "tables"):
for table in tables.tables:
table_text = ""
for i, row in enumerate(table.rows):
row_cells = []
for cell in row.cells:
if hasattr(cell, "rect"):
cell_text = page.get_text("text", clip=cell.rect)
cell_text = self.clean_text(cell_text)
row_cells.append(cell_text)
if row_cells:
table_text += " | ".join(row_cells) + "\n"
# Add table text to page text
if table_text.strip():
page_text += "\n\nTABLE:\n" + table_text
except Exception as table_err:
print(f"Warning: Skipping table extraction for page {page_num}: {str(table_err)}")
# Split the page text into chunks
if page_text.strip():
page_chunks = self.text_splitter.split_text(page_text)
# Create PDFChunk objects
for i, chunk_text in enumerate(page_chunks):
pdf_chunks.append(PDFChunk(
text=chunk_text,
source=pdf_name,
page_num=page_num + 1, # 1-based page numbering for humans
chunk_id=i
))
# Clear memory periodically
if page_num % 10 == 0:
clear_memory()
doc.close()
# Cache the results
self._save_to_cache(pdf_path, pdf_chunks)
return pdf_chunks
except Exception as e:
print(f"Error extracting text from {pdf_path}: {str(e)}")
return []
def process_pdf(self, pdf_name: str) -> List[PDFChunk]:
"""Process a single PDF file and extract chunks
Args:
pdf_name: Name of the PDF file in the pdf_dir
Returns:
List of PDFChunk objects from the PDF
"""
pdf_path = os.path.join(self.pdf_dir, pdf_name)
return self.extract_text_from_pdf(pdf_path)
def process_all_pdfs(self, batch_size: int = 2) -> List[PDFChunk]:
"""Process all PDFs in batches to manage memory
Args:
batch_size: Number of PDFs to process in each batch
Returns:
List of all PDFChunk objects from all PDFs
"""
all_chunks = []
pdf_files = self.list_pdfs()
if not pdf_files:
print("No PDF files found in the directory.")
return []
# Process PDFs in batches
for i in range(0, len(pdf_files), batch_size):
batch = pdf_files[i:i+batch_size]
print(f"Processing batch {i//batch_size + 1}/{(len(pdf_files)-1)//batch_size + 1}")
for pdf_name in batch:
print(f"Processing {pdf_name}")
chunks = self.process_pdf(pdf_name)
all_chunks.extend(chunks)
print(f"Extracted {len(chunks)} chunks from {pdf_name}")
# Clear memory after each batch
clear_memory()
return all_chunks
# === VECTOR DATABASE SETUP ===
class VectorDBManager:
def __init__(self, model_name: str = "sentence-transformers/all-MiniLM-L6-v2"):
"""Initialize vector database manager
Args:
model_name: Name of the embedding model
"""
# Initialize embedding model with normalization
try:
self.embedding_model = HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs={"device": "cpu"},
encode_kwargs={"normalize_embeddings": True}
)
except Exception as e:
print(f"Error initializing embedding model {model_name}: {str(e)}")
print("Falling back to all-MiniLM-L6-v2 model")
self.embedding_model = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={"device": "cpu"},
encode_kwargs={"normalize_embeddings": True}
)
self.vectordb = None
# BM25 index for hybrid search
self.bm25_index = None
self.chunks = []
self.tokenized_chunks = []
def _prepare_bm25(self, chunks: List[PDFChunk]):
"""Prepare BM25 index for hybrid search"""
# Tokenize chunks for BM25
try:
tokenized_chunks = []
for chunk in chunks:
# Tokenize and remove stopwords
tokens = word_tokenize(chunk.text.lower())
stop_words = set(stopwords.words('english'))
filtered_tokens = [w for w in tokens if w.isalnum() and w not in stop_words]
tokenized_chunks.append(filtered_tokens)
# Create BM25 index
self.bm25_index = BM25Okapi(tokenized_chunks)
except Exception as e:
print(f"Error creating BM25 index: {str(e)}")
print(traceback.format_exc())
self.bm25_index = None
def create_vector_db(self, chunks: List[PDFChunk]) -> None:
"""Create vector database from text chunks
Args:
chunks: List of PDFChunk objects
"""
try:
if not chunks or len(chunks) == 0:
print("ERROR: No chunks provided to create vector database")
return
print(f"Creating vector DB with {len(chunks)} chunks")
# Store chunks for hybrid search
self.chunks = chunks
# Prepare data for vector DB
chunk_texts = [chunk.text for chunk in chunks]
# Create BM25 index for hybrid search
print("Creating BM25 index for hybrid search")
self._prepare_bm25(chunks)
# Process in smaller batches to manage memory
batch_size = 16 # Reduced for Spaces
all_embeddings = []
for i in range(0, len(chunk_texts), batch_size):
batch = chunk_texts[i:i+batch_size]
print(f"Embedding batch {i//batch_size + 1}/{(len(chunk_texts)-1)//batch_size + 1}")
# Generate embeddings for the batch
batch_embeddings = self.embedding_model.embed_documents(batch)
all_embeddings.extend(batch_embeddings)
# Clear memory after each batch
clear_memory()
# Create FAISS index
print(f"Creating FAISS index with {len(all_embeddings)} embeddings")
self.vectordb = FAISS.from_embeddings(
text_embeddings=list(zip(chunk_texts, all_embeddings)),
embedding=self.embedding_model
)
print(f"Vector database created with {len(chunks)} documents")
except Exception as e:
print(f"Error creating vector database: {str(e)}")
print(traceback.format_exc())
raise
def _format_chunk_with_metadata(self, chunk: PDFChunk) -> str:
"""Format a chunk with its metadata for better context"""
return f"Source: {chunk.source} | Page: {chunk.page_num}\n\n{chunk.text}"
def hybrid_search(self, query: str, k: int = 5, alpha: float = 0.7) -> List[str]:
"""Hybrid search combining vector search and BM25
Args:
query: Query text
k: Number of results to return
alpha: Weight for vector search (1-alpha for BM25)
Returns:
List of formatted documents
"""
if self.vectordb is None:
print("Vector database not initialized")
return []
try:
# Get vector search results
vector_results = self.vectordb.similarity_search(query, k=k*2)
vector_texts = [doc.page_content for doc in vector_results]
final_results = []
# Combine with BM25 if available
if self.bm25_index is not None:
try:
# Tokenize query for BM25
query_tokens = word_tokenize(query.lower())
stop_words = set(stopwords.words('english'))
filtered_query = [w for w in query_tokens if w.isalnum() and w not in stop_words]
# Get BM25 scores
bm25_scores = self.bm25_index.get_scores(filtered_query)
# Combine scores (normalized)
combined_results = []
seen_texts = set()
# First add vector results with their positions as scores
for i, text in enumerate(vector_texts):
if text not in seen_texts:
seen_texts.add(text)
# Find corresponding chunk
for j, chunk in enumerate(self.chunks):
if chunk.text == text:
# Combine scores: alpha * vector_score + (1-alpha) * bm25_score
# For vector, use inverse of position as score (normalized)
vector_score = 1.0 - (i / len(vector_texts))
# Normalize BM25 score
bm25_score = bm25_scores[j] / max(bm25_scores) if max(bm25_scores) > 0 else 0
combined_score = alpha * vector_score + (1-alpha) * bm25_score
combined_results.append((chunk, combined_score))
break
# Sort by combined score
combined_results.sort(key=lambda x: x[1], reverse=True)
# Get top k results
top_chunks = [item[0] for item in combined_results[:k]]
# Format results with metadata
final_results = [self._format_chunk_with_metadata(chunk) for chunk in top_chunks]
except Exception as e:
print(f"Error in BM25 scoring: {str(e)}")
# Fallback to vector search results
final_results = vector_texts[:k]
else:
# Just use vector search results if BM25 is not available
final_results = vector_texts[:k]
return final_results
except Exception as e:
print(f"Error during hybrid search: {str(e)}")
return []
# === QUERY EXPANSION ===
class QueryExpander:
def __init__(self, llm_model):
"""Initialize query expander
Args:
llm_model: LLM model for query expansion
"""
self.llm = llm_model
def expand_query(self, query: str) -> str:
"""Expand the query using the LLM to improve retrieval
Args:
query: Original query
Returns:
Expanded query
"""
try:
prompt = f"""I need to search for documents related to this question: "{query}"
Please help me expand this query by identifying key concepts, synonyms, and related terms that might be used in the documents.
Return only the expanded search query, without any explanations or additional text.
Expanded query:"""
expanded = self.llm.generate(prompt, max_tokens=100, temperature=0.3)
# Combine original and expanded
combined = f"{query} {expanded}"
# Limit length
if len(combined) > 300:
combined = combined[:300]
return combined
except:
# Return original query if expansion fails
return query
# === LLM SETUP ===
class Phi2Model:
def __init__(self, model_path: str = model_path):
"""Initialize Phi-2 model
Args:
model_path: Path to the model file
"""
try:
# Initialize Phi-2 with llama.cpp - optimized for Spaces
self.llm = Llama(
model_path=model_path,
n_ctx=1024, # Reduced context window for Spaces
n_batch=64, # Reduced batch size
n_gpu_layers=0, # Run on CPU for compatibility
verbose=False
)
except Exception as e:
print(f"Error initializing Phi-2 model: {str(e)}")
raise
def generate(self, prompt: str,
max_tokens: int = 512,
temperature: float = 0.7,
top_p: float = 0.9,
stream: bool = False) -> Union[str, Generator[str, None, None]]:
"""Generate text using Phi-2
Args:
prompt: Input prompt
max_tokens: Maximum number of tokens to generate
temperature: Sampling temperature
top_p: Top-p sampling parameter
stream: Whether to stream the output
Returns:
Generated text or generator if streaming
"""
try:
if stream:
return self._generate_stream(prompt, max_tokens, temperature, top_p)
else:
output = self.llm(
prompt,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
echo=False
)
return output["choices"][0]["text"]
except Exception as e:
print(f"Error generating text: {str(e)}")
return "Error: Could not generate response."
def _generate_stream(self, prompt: str,
max_tokens: int = 512,
temperature: float = 0.7,
top_p: float = 0.9) -> Generator[str, None, None]:
"""Stream text generation using Phi-2
Args:
prompt: Input prompt
max_tokens: Maximum number of tokens to generate
temperature: Sampling temperature
top_p: Top-p sampling parameter
Yields:
Generated text tokens
"""
response = ""
for output in self.llm(
prompt,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
echo=False,
stream=True
):
token = output["choices"][0]["text"]
response += token
yield response
# === RAG SYSTEM ===
class RAGSystem:
def __init__(self, pdf_processor: PDFProcessor,
vector_db: VectorDBManager,
model: Phi2Model):
"""Initialize RAG system
Args:
pdf_processor: PDF processor instance
vector_db: Vector database manager instance
model: LLM model instance
"""
self.pdf_processor = pdf_processor
self.vector_db = vector_db
self.model = model
self.query_expander = QueryExpander(model)
self.is_initialized = False
def process_documents(self) -> bool:
"""Process all documents and create vector database
Returns:
True if successful, False otherwise
"""
try:
# Process PDFs
chunks = self.pdf_processor.process_all_pdfs()
if not chunks:
print("No chunks were extracted from PDFs")
return False
print(f"Total chunks extracted: {len(chunks)}")
# Create vector database
print("Creating vector database...")
self.vector_db.create_vector_db(chunks)
# Verify success
if self.vector_db.vectordb is None:
print("Failed to create vector database")
return False
# Set initialization flag
self.is_initialized = True
return True
except Exception as e:
print(f"Error processing documents: {str(e)}")
print(traceback.format_exc())
return False
def generate_prompt(self, query: str, contexts: List[str]) -> str:
"""Generate prompt for the LLM with better instructions
Args:
query: User query
contexts: Retrieved contexts
Returns:
Formatted prompt
"""
# Format contexts with numbering for better reference
formatted_contexts = ""
for i, context in enumerate(contexts):
formatted_contexts += f"[CONTEXT {i+1}]\n{context}\n\n"
# Create prompt with better instructions
prompt = f"""You are an AI assistant that answers questions based on the provided context information.
User Query: {query}
Below are relevant passages from documents that might help answer the query:
{formatted_contexts}
Using ONLY the information provided in the context above, provide a comprehensive answer to the user's query.
If the provided context doesn't contain relevant information to answer the query, clearly state: "I don't have enough information in the provided context to answer this question."
Do not use any prior knowledge that is not contained in the provided context.
If quoting from the context, mention the source document and page number.
Organize your answer in a clear, coherent manner.
Answer:"""
return prompt
def answer_query(self, query: str, k: int = 5, max_tokens: int = 512,
temperature: float = 0.7, stream: bool = False) -> Union[str, Generator[str, None, None]]:
"""Answer a query using RAG with query expansion
Args:
query: User query
k: Number of contexts to retrieve
max_tokens: Maximum number of tokens to generate
temperature: Temperature for generation
stream: Whether to stream the output
Returns:
Answer text or generator if streaming
"""
# Check if system is initialized
if not self.is_initialized or self.vector_db.vectordb is None:
return "Error: Documents have not been processed yet. Please process documents first."
try:
# Expand query for better retrieval
expanded_query = self.query_expander.expand_query(query)
print(f"Expanded query: {expanded_query}")
# Retrieve relevant contexts using hybrid search
contexts = self.vector_db.hybrid_search(expanded_query, k=k)
if not contexts:
return "No relevant information found in the documents. Please try a different query or check if documents were processed correctly."
# Generate prompt with improved instructions
prompt = self.generate_prompt(query, contexts)
# Generate answer
return self.model.generate(
prompt,
max_tokens=max_tokens,
temperature=temperature,
stream=stream
)
except Exception as e:
print(f"Error answering query: {str(e)}")
print(traceback.format_exc())
return f"Error processing your query: {str(e)}"
# === GRADIO INTERFACE ===
class RAGInterface:
def __init__(self, rag_system: RAGSystem):
"""Initialize Gradio interface
Args:
rag_system: RAG system instance
"""
self.rag_system = rag_system
self.interface = None
self.is_processing = False
def upload_file(self, files):
"""Upload PDF files"""
try:
os.makedirs("pdfs", exist_ok=True)
uploaded_files = []
for file in files:
destination = os.path.join("pdfs", os.path.basename(file.name))
shutil.copy(file.name, destination)
uploaded_files.append(os.path.basename(file.name))
# Verify files exist in the directory
pdf_files = [f for f in os.listdir("pdfs") if f.lower().endswith('.pdf')]
if not pdf_files:
return "No PDF files were uploaded successfully."
return f"Successfully uploaded {len(uploaded_files)} files: {', '.join(uploaded_files)}"
except Exception as e:
return f"Error uploading files: {str(e)}"
def process_documents(self):
"""Process all documents
Returns:
Status message
"""
if self.is_processing:
return "Document processing is already in progress. Please wait."
try:
self.is_processing = True
start_time = time.time()
success = self.rag_system.process_documents()
elapsed = time.time() - start_time
self.is_processing = False
if success:
return f"Documents processed successfully in {elapsed:.2f} seconds."
else:
return "Failed to process documents. Check the logs for more information."
except Exception as e:
self.is_processing = False
return f"Error processing documents: {str(e)}"
def answer_query(self, query, k, max_tokens, temperature):
"""Answer a query
Args:
query: User query
k: Number of contexts to retrieve
max_tokens: Maximum number of tokens to generate
temperature: Sampling temperature
Returns:
Answer
"""
if not query.strip():
return "Please enter a question."
try:
return self.rag_system.answer_query(
query,
k=k,
max_tokens=max_tokens,
temperature=temperature,
stream=False
)
except Exception as e:
return f"Error answering query: {str(e)}"
def answer_query_stream(self, query, k, max_tokens, temperature):
"""Stream answer to a query
Args:
query: User query
k: Number of contexts to retrieve
max_tokens: Maximum number of tokens to generate
temperature: Sampling temperature
Yields:
Generated text
"""
if not query.strip():
yield "Please enter a question."
return
try:
yield from self.rag_system.answer_query(
query,
k=k,
max_tokens=max_tokens,
temperature=temperature,
stream=True
)
except Exception as e:
yield f"Error answering query: {str(e)}"
def create_interface(self):
"""Create Gradio interface"""
with gr.Blocks(title="PDF RAG System") as interface:
gr.Markdown("# PDF RAG System with Phi-2")
gr.Markdown("Upload your PDF documents, process them, and ask questions to get answers based on the content.")
with gr.Tab("Upload & Process"):
with gr.Row():
pdf_files = gr.File(
file_count="multiple",
label="Upload PDF Files",
file_types=[".pdf"]
)
upload_button = gr.Button("Upload", variant="primary")
upload_output = gr.Textbox(label="Upload Status", lines=2)
upload_button.click(self.upload_file, inputs=[pdf_files], outputs=upload_output)
process_button = gr.Button("Process Documents", variant="primary")
process_output = gr.Textbox(label="Processing Status", lines=2)
process_button.click(self.process_documents, inputs=[], outputs=process_output)
with gr.Tab("Query"):
with gr.Row():
with gr.Column():
query_input = gr.Textbox(
label="Question",
lines=3,
placeholder="Ask a question about your documents..."
)
with gr.Row():
k_slider = gr.Slider(
minimum=1,
maximum=10,
value=3,
step=1,
label="Number of Contexts"
)
max_tokens_slider = gr.Slider(
minimum=100,
maximum=800,
value=400,
step=50,
label="Max Tokens"
)
temperature_slider = gr.Slider(
minimum=0.1,
maximum=1.0,value=0.7,
step=0.1,
label="Temperature"
)
submit_button = gr.Button("Submit", variant="primary")
answer_output = gr.Textbox(label="Answer", lines=10)
submit_button.click(
self.answer_query,
inputs=[query_input, k_slider, max_tokens_slider, temperature_slider],
outputs=answer_output
)
# Add streaming capability
stream_button = gr.Button("Submit (Streaming)", variant="secondary")
stream_button.click(
self.answer_query_stream,
inputs=[query_input, k_slider, max_tokens_slider, temperature_slider],
outputs=answer_output
)
gr.Markdown("""
## Instructions
1. Upload PDF files in the 'Upload & Process' tab.
2. Click the 'Process Documents' button to extract and index content.
3. Switch to the 'Query' tab to ask questions about your documents.
4. Adjust parameters as needed:
- Number of Contexts: More contexts provide more information but may be less focused.
- Max Tokens: Controls the length of the response.
- Temperature: Lower values (0.1-0.5) give more focused answers, higher values (0.6-1.0) give more creative answers.
""")
self.interface = interface
return interface
def launch(self, **kwargs):
"""Launch the Gradio interface"""
if self.interface is None:
self.create_interface()
self.interface.launch(**kwargs)
# === MAIN APPLICATION ===
def main():
"""Main function to set up and launch the application"""
try:
# Initialize components
pdf_processor = PDFProcessor(pdf_dir="pdfs")
vector_db = VectorDBManager()
phi2_model = Phi2Model()
# Initialize RAG system
rag_system = RAGSystem(pdf_processor, vector_db, phi2_model)
# Create interface
interface = RAGInterface(rag_system)
# Launch application
interface.launch(share=True)
except Exception as e:
print(f"Error initializing application: {str(e)}")
print(traceback.format_exc())
if __name__ == "__main__":
main() |