# import os | |
# os.environ["STREAMLIT_BROWSER_GATHER_USAGE_STATS"] = "false" | |
# import streamlit as st | |
# import spacy | |
# import benepar | |
# from nltk import Tree | |
# import nltk | |
# # Setup NLTK and benepar | |
# nltk.download('punkt') | |
# benepar.download('benepar_en3') | |
# nlp = spacy.load("en_core_web_sm") | |
# if "benepar" not in nlp.pipe_names: | |
# nlp.add_pipe("benepar", config={"model": "benepar_en3"}) | |
# st.set_page_config(page_title="Syntax Parser Comparison Tool", layout="wide") | |
# st.title("π Syntax Parser Comparison Tool") | |
# st.write("This tool compares Dependency Parsing, Constituency Parsing, and a simulated Abstract Syntax Representation (ASR).") | |
# sentence = st.text_input("Enter a sentence:", "John eats an apple.") | |
# if sentence: | |
# doc = nlp(sentence) | |
# sent = list(doc.sents)[0] | |
# col1, col2, col3 = st.columns(3) | |
# with col1: | |
# st.header("Dependency Parsing") | |
# for token in sent: | |
# st.write(f"{token.text} --> {token.dep_} --> {token.head.text}") | |
# st.code(" ".join(f"({token.text}, {token.dep_}, {token.head.text})" for token in sent)) | |
# with col2: | |
# st.header("Constituency Parsing") | |
# tree = sent._.parse_string | |
# st.text(tree) | |
# st.code(Tree.fromstring(tree).pformat()) | |
# with col3: | |
# st.header("Simulated ASR Output") | |
# st.write("Combining phrase structure with dependency head annotations:") | |
# for token in sent: | |
# if token.dep_ in ("nsubj", "obj", "det", "ROOT"): | |
# st.write(f"[{token.text}] - {token.dep_} --> {token.head.text} ({token.pos_})") | |
# st.markdown("_(ASR is simulated by combining POS tags, dependency heads, and phrase information.)_") | |
# st.code(" ".join(f"[{token.text}: {token.dep_} β {token.head.text}]({token.pos_})" for token in sent)) | |
import streamlit as st | |
st.title("β Custom App Loaded") | |
st.write("If you can see this, your `streamlit_app.py` is correctly loaded by Hugging Face.") | |