Update src/streamlit_app.py
Browse files- src/streamlit_app.py +113 -20
src/streamlit_app.py
CHANGED
@@ -1,28 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import nltk
|
3 |
import spacy
|
4 |
import benepar
|
5 |
from nltk import Tree
|
|
|
6 |
|
7 |
-
# Configure
|
8 |
nltk_data_path = "/tmp/nltk_data"
|
9 |
nltk.data.path.append(nltk_data_path)
|
10 |
nltk.download('punkt', download_dir=nltk_data_path)
|
11 |
|
12 |
-
# Load
|
13 |
nlp = spacy.load("en_core_web_sm")
|
14 |
|
15 |
-
# Add benepar
|
16 |
if "benepar" not in nlp.pipe_names:
|
17 |
benepar.download("benepar_en3")
|
18 |
nlp.add_pipe("benepar", config={"model": "benepar_en3"})
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
st.title("🌐 Syntax Parser Comparison Tool")
|
22 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
# Input
|
25 |
-
sentence = st.text_input("Enter a sentence:", "John eats an apple.")
|
26 |
|
27 |
if sentence:
|
28 |
doc = nlp(sentence)
|
@@ -30,23 +107,39 @@ if sentence:
|
|
30 |
|
31 |
col1, col2, col3 = st.columns(3)
|
32 |
|
|
|
33 |
with col1:
|
34 |
-
st.
|
|
|
|
|
35 |
for token in sent:
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
38 |
|
|
|
39 |
with col2:
|
40 |
-
st.
|
41 |
-
|
42 |
-
st.
|
43 |
-
|
|
|
44 |
|
|
|
45 |
with col3:
|
46 |
-
st.
|
47 |
-
st.
|
|
|
48 |
for token in sent:
|
49 |
if token.dep_ in ("nsubj", "obj", "det", "ROOT"):
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# import nltk
|
3 |
+
# import spacy
|
4 |
+
# import benepar
|
5 |
+
# from nltk import Tree
|
6 |
+
|
7 |
+
# # Configure nltk to use /tmp
|
8 |
+
# nltk_data_path = "/tmp/nltk_data"
|
9 |
+
# nltk.data.path.append(nltk_data_path)
|
10 |
+
# nltk.download('punkt', download_dir=nltk_data_path)
|
11 |
+
|
12 |
+
# # Load installed spaCy model
|
13 |
+
# nlp = spacy.load("en_core_web_sm")
|
14 |
+
|
15 |
+
# # Add benepar parser
|
16 |
+
# if "benepar" not in nlp.pipe_names:
|
17 |
+
# benepar.download("benepar_en3")
|
18 |
+
# nlp.add_pipe("benepar", config={"model": "benepar_en3"})
|
19 |
+
# # Streamlit UI
|
20 |
+
# st.set_page_config(page_title="Syntax Parser Comparison", layout="wide")
|
21 |
+
# st.title("🌐 Syntax Parser Comparison Tool")
|
22 |
+
# st.write("This tool compares Dependency Parsing, Constituency Parsing, and a simulated Abstract Syntax Representation (ASR).")
|
23 |
+
|
24 |
+
# # Input
|
25 |
+
# sentence = st.text_input("Enter a sentence:", "John eats an apple.")
|
26 |
+
|
27 |
+
# if sentence:
|
28 |
+
# doc = nlp(sentence)
|
29 |
+
# sent = list(doc.sents)[0]
|
30 |
+
|
31 |
+
# col1, col2, col3 = st.columns(3)
|
32 |
+
|
33 |
+
# with col1:
|
34 |
+
# st.header("Dependency Parsing")
|
35 |
+
# for token in sent:
|
36 |
+
# st.write(f"{token.text} --> {token.dep_} --> {token.head.text}")
|
37 |
+
# st.code(" ".join(f"({token.text}, {token.dep_}, {token.head.text})" for token in sent))
|
38 |
+
|
39 |
+
# with col2:
|
40 |
+
# st.header("Constituency Parsing")
|
41 |
+
# tree = sent._.parse_string
|
42 |
+
# st.text(tree)
|
43 |
+
# st.code(Tree.fromstring(tree).pformat())
|
44 |
+
|
45 |
+
# with col3:
|
46 |
+
# st.header("Simulated ASR Output")
|
47 |
+
# st.write("Combining phrase structure with dependency head annotations:")
|
48 |
+
# for token in sent:
|
49 |
+
# if token.dep_ in ("nsubj", "obj", "det", "ROOT"):
|
50 |
+
# st.write(f"[{token.text}] - {token.dep_} --> {token.head.text} ({token.pos_})")
|
51 |
+
# st.markdown("_(ASR is simulated by combining POS tags, dependency heads, and phrase information.)_")
|
52 |
+
# st.code(" ".join(f"[{token.text}: {token.dep_} → {token.head.text}]({token.pos_})" for token in sent))
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
import streamlit as st
|
57 |
import nltk
|
58 |
import spacy
|
59 |
import benepar
|
60 |
from nltk import Tree
|
61 |
+
from graphviz import Digraph
|
62 |
|
63 |
+
# Configure NLTK to use /tmp for downloads
|
64 |
nltk_data_path = "/tmp/nltk_data"
|
65 |
nltk.data.path.append(nltk_data_path)
|
66 |
nltk.download('punkt', download_dir=nltk_data_path)
|
67 |
|
68 |
+
# Load spaCy model
|
69 |
nlp = spacy.load("en_core_web_sm")
|
70 |
|
71 |
+
# Add benepar if not already added
|
72 |
if "benepar" not in nlp.pipe_names:
|
73 |
benepar.download("benepar_en3")
|
74 |
nlp.add_pipe("benepar", config={"model": "benepar_en3"})
|
75 |
+
|
76 |
+
# Streamlit page config
|
77 |
+
st.set_page_config(
|
78 |
+
page_title="🌐 Syntax Parser Comparison Tool",
|
79 |
+
page_icon="📝",
|
80 |
+
layout="wide"
|
81 |
+
)
|
82 |
+
|
83 |
+
# Sidebar Info
|
84 |
+
st.sidebar.title("ℹ️ About This Tool")
|
85 |
+
st.sidebar.write("""
|
86 |
+
Compare **Dependency Parsing**, **Constituency Parsing**,
|
87 |
+
and a simulated **Abstract Syntax Representation (ASR)**.
|
88 |
+
""")
|
89 |
+
st.sidebar.markdown("---")
|
90 |
+
st.sidebar.info("💡 Enter a sentence in the input box to see all 3 parses.")
|
91 |
+
|
92 |
+
# Title
|
93 |
st.title("🌐 Syntax Parser Comparison Tool")
|
94 |
+
st.markdown("""
|
95 |
+
This tool demonstrates **three parsing styles** side-by-side:
|
96 |
+
1. **Dependency Parsing** – Shows head–dependent word relationships.
|
97 |
+
2. **Constituency Parsing** – Displays hierarchical phrase structures.
|
98 |
+
3. **Abstract Syntax Representation (ASR)** – Merges phrase structure with dependency info.
|
99 |
+
""")
|
100 |
|
101 |
+
# Input sentence
|
102 |
+
sentence = st.text_input("✏️ Enter a sentence:", "John eats an apple.")
|
103 |
|
104 |
if sentence:
|
105 |
doc = nlp(sentence)
|
|
|
107 |
|
108 |
col1, col2, col3 = st.columns(3)
|
109 |
|
110 |
+
# 1️⃣ Dependency Parsing
|
111 |
with col1:
|
112 |
+
st.subheader("🔗 Dependency Parsing")
|
113 |
+
dep_graph = Digraph()
|
114 |
+
dep_graph.attr(rankdir="TB")
|
115 |
for token in sent:
|
116 |
+
dep_graph.node(token.text, f"{token.text}\n({token.dep_})")
|
117 |
+
if token.head != token:
|
118 |
+
dep_graph.edge(token.head.text, token.text)
|
119 |
+
st.graphviz_chart(dep_graph)
|
120 |
+
with st.expander("Raw Dependency Tuples"):
|
121 |
+
st.code(" ".join(f"({t.text}, {t.dep_}, {t.head.text})" for t in sent))
|
122 |
|
123 |
+
# 2️⃣ Constituency Parsing
|
124 |
with col2:
|
125 |
+
st.subheader("🌳 Constituency Parsing")
|
126 |
+
tree_str = sent._.parse_string
|
127 |
+
with st.expander("Tree String"):
|
128 |
+
st.text(tree_str)
|
129 |
+
st.code(Tree.fromstring(tree_str).pformat(), language="text")
|
130 |
|
131 |
+
# 3️⃣ Simulated ASR
|
132 |
with col3:
|
133 |
+
st.subheader("🧩 Simulated ASR Output")
|
134 |
+
st.markdown("Combines **dependency heads**, **POS tags**, and **phrase info**.")
|
135 |
+
highlighted_output = []
|
136 |
for token in sent:
|
137 |
if token.dep_ in ("nsubj", "obj", "det", "ROOT"):
|
138 |
+
highlighted_output.append(
|
139 |
+
f"**[{token.text}]** - {token.dep_} → {token.head.text} ({token.pos_})"
|
140 |
+
)
|
141 |
+
st.write("\n".join(highlighted_output))
|
142 |
+
with st.expander("ASR Encoded String"):
|
143 |
+
st.code(
|
144 |
+
" ".join(f"[{t.text}: {t.dep_} → {t.head.text}]({t.pos_})" for t in sent)
|
145 |
+
)
|