utkarsh1797 commited on
Commit
98ffeff
·
verified ·
1 Parent(s): 4fffb8a

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +48 -39
src/streamlit_app.py CHANGED
@@ -1,40 +1,49 @@
1
- import altair as alt
2
- import numpy as np
3
- import pandas as pd
4
- import streamlit as st
5
 
6
- """
7
- # Welcome to Streamlit!
8
-
9
- Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
10
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
11
- forums](https://discuss.streamlit.io).
12
-
13
- In the meantime, below is an example of what you can do with just a few lines of code:
14
- """
15
-
16
- num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
17
- num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
18
-
19
- indices = np.linspace(0, 1, num_points)
20
- theta = 2 * np.pi * num_turns * indices
21
- radius = indices
22
-
23
- x = radius * np.cos(theta)
24
- y = radius * np.sin(theta)
25
-
26
- df = pd.DataFrame({
27
- "x": x,
28
- "y": y,
29
- "idx": indices,
30
- "rand": np.random.randn(num_points),
31
- })
32
-
33
- st.altair_chart(alt.Chart(df, height=700, width=700)
34
- .mark_point(filled=True)
35
- .encode(
36
- x=alt.X("x", axis=None),
37
- y=alt.Y("y", axis=None),
38
- color=alt.Color("idx", legend=None, scale=alt.Scale()),
39
- size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
40
- ))
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ os.environ["STREAMLIT_BROWSER_GATHER_USAGE_STATS"] = "false"
 
 
3
 
4
+ import streamlit as st
5
+ import spacy
6
+ import benepar
7
+ from nltk import Tree
8
+ import nltk
9
+
10
+ # Setup NLTK and benepar
11
+ nltk.download('punkt')
12
+ benepar.download('benepar_en3')
13
+
14
+ nlp = spacy.load("en_core_web_sm")
15
+ if "benepar" not in nlp.pipe_names:
16
+ nlp.add_pipe("benepar", config={"model": "benepar_en3"})
17
+
18
+ st.set_page_config(page_title="Syntax Parser Comparison Tool", layout="wide")
19
+ st.title("🌐 Syntax Parser Comparison Tool")
20
+ st.write("This tool compares Dependency Parsing, Constituency Parsing, and a simulated Abstract Syntax Representation (ASR).")
21
+
22
+ sentence = st.text_input("Enter a sentence:", "John eats an apple.")
23
+
24
+ if sentence:
25
+ doc = nlp(sentence)
26
+ sent = list(doc.sents)[0]
27
+
28
+ col1, col2, col3 = st.columns(3)
29
+
30
+ with col1:
31
+ st.header("Dependency Parsing")
32
+ for token in sent:
33
+ st.write(f"{token.text} --> {token.dep_} --> {token.head.text}")
34
+ st.code(" ".join(f"({token.text}, {token.dep_}, {token.head.text})" for token in sent))
35
+
36
+ with col2:
37
+ st.header("Constituency Parsing")
38
+ tree = sent._.parse_string
39
+ st.text(tree)
40
+ st.code(Tree.fromstring(tree).pformat())
41
+
42
+ with col3:
43
+ st.header("Simulated ASR Output")
44
+ st.write("Combining phrase structure with dependency head annotations:")
45
+ for token in sent:
46
+ if token.dep_ in ("nsubj", "obj", "det", "ROOT"):
47
+ st.write(f"[{token.text}] - {token.dep_} --> {token.head.text} ({token.pos_})")
48
+ st.markdown("_(ASR is simulated by combining POS tags, dependency heads, and phrase information.)_")
49
+ st.code(" ".join(f"[{token.text}: {token.dep_} → {token.head.text}]({token.pos_})" for token in sent))