File size: 4,817 Bytes
10e9b7d
 
3c4371f
acef13a
8e5831a
10e9b7d
d59f015
e80aab9
3db6293
e80aab9
8e5831a
31243f4
8e5831a
 
31243f4
8e5831a
7e4a06b
8e5831a
7e4a06b
7d65c66
3c4371f
8e5831a
acef13a
36ed51a
3c4371f
8e5831a
eccf8e4
8e5831a
31243f4
8e5831a
7d65c66
8e5831a
e80aab9
8e5831a
7d65c66
 
31243f4
 
 
 
 
 
7d65c66
 
 
31243f4
8e5831a
31243f4
 
 
 
8e5831a
e80aab9
8e5831a
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
31243f4
 
7d65c66
31243f4
8e5831a
e80aab9
8e5831a
e80aab9
8e5831a
0ee0419
e514fd7
 
 
81917a3
e514fd7
 
 
 
8e5831a
 
e514fd7
e80aab9
7e4a06b
31243f4
9088b99
7d65c66
31243f4
 
 
e80aab9
 
 
3c4371f
7d65c66
3c4371f
7d65c66
 
3c4371f
 
7d65c66
3c4371f
7d65c66
 
 
 
 
 
 
 
 
3c4371f
 
8e5831a
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import os
import gradio as gr
import pandas as pd
from agent import LLMOpenAIAgent
from api import APIClient

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the ExampleAgent on them, submits all answers,
    and displays the results. Uses modular agent and API logic.
    """
    space_id = os.getenv("SPACE_ID")
    if profile:
        username = f"{profile.username}"
    else:
        return "Please Login to Hugging Face with the button.", None

    api = APIClient(DEFAULT_API_URL)
    agent = LLMOpenAIAgent()
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"

    # Fetch questions
    try:
        questions_data = api.get_questions()
        if not questions_data:
            return "Fetched questions list is empty or invalid format.", None
    except Exception as e:
        return f"Error fetching questions: {e}", None

    # Run agent
    results_log = []
    answers_payload = []
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # Submit answers
    try:
        result_data = api.submit(username.strip(), agent_code, answers_payload)
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except Exception as e:
        results_df = pd.DataFrame(results_log)
        return f"Submission Failed: {e}", results_df

# --- Gradio UI ---
with gr.Blocks() as demo:
    gr.Markdown("# Modular Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        ---
        **Disclaimers:**
        Once clicking on the "submit" button, it can take quite some time (this is the time for the agent to go through all the questions).
        This space provides a modular setup for robust, maintainable solutions.
        """
    )
    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Modular Agent Evaluation...")
    demo.launch(debug=True, share=False)