File size: 4,817 Bytes
10e9b7d 3c4371f acef13a 8e5831a 10e9b7d d59f015 e80aab9 3db6293 e80aab9 8e5831a 31243f4 8e5831a 31243f4 8e5831a 7e4a06b 8e5831a 7e4a06b 7d65c66 3c4371f 8e5831a acef13a 36ed51a 3c4371f 8e5831a eccf8e4 8e5831a 31243f4 8e5831a 7d65c66 8e5831a e80aab9 8e5831a 7d65c66 31243f4 7d65c66 31243f4 8e5831a 31243f4 8e5831a e80aab9 8e5831a 31243f4 e80aab9 3c4371f e80aab9 31243f4 7d65c66 31243f4 8e5831a e80aab9 8e5831a e80aab9 8e5831a 0ee0419 e514fd7 81917a3 e514fd7 8e5831a e514fd7 e80aab9 7e4a06b 31243f4 9088b99 7d65c66 31243f4 e80aab9 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 8e5831a 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
import os
import gradio as gr
import pandas as pd
from agent import LLMOpenAIAgent
from api import APIClient
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the ExampleAgent on them, submits all answers,
and displays the results. Uses modular agent and API logic.
"""
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
else:
return "Please Login to Hugging Face with the button.", None
api = APIClient(DEFAULT_API_URL)
agent = LLMOpenAIAgent()
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
# Fetch questions
try:
questions_data = api.get_questions()
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
except Exception as e:
return f"Error fetching questions: {e}", None
# Run agent
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# Submit answers
try:
result_data = api.submit(username.strip(), agent_code, answers_payload)
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
results_df = pd.DataFrame(results_log)
return f"Submission Failed: {e}", results_df
# --- Gradio UI ---
with gr.Blocks() as demo:
gr.Markdown("# Modular Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit" button, it can take quite some time (this is the time for the agent to go through all the questions).
This space provides a modular setup for robust, maintainable solutions.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Modular Agent Evaluation...")
demo.launch(debug=True, share=False) |