File size: 24,393 Bytes
776e7c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
"""
Gradio web interface for sentiment analysis.

This module provides a modern, responsive web interface using Gradio
for human interaction with the sentiment analysis system, including
real-time analysis, confidence visualization, and history tracking.
"""

import asyncio
import logging
import json
import os
from typing import Dict, Any, List, Tuple, Optional
from datetime import datetime
import pandas as pd
import plotly.graph_objects as go
import plotly.express as px

try:
    import gradio as gr
    GRADIO_AVAILABLE = True
except ImportError:
    GRADIO_AVAILABLE = False
    logging.error("Gradio not available. Install with: pip install gradio")

from .sentiment_analyzer import get_analyzer, SentimentResult, SentimentLabel
from .tools import list_tools

class SentimentHistory:
    """Manages sentiment analysis history."""
    
    def __init__(self, max_entries: int = 100):
        self.max_entries = max_entries
        self.entries: List[Dict[str, Any]] = []
        self.logger = logging.getLogger(__name__)
    
    def add_entry(self, text: str, result: SentimentResult, backend: str) -> None:
        entry = {
            "timestamp": datetime.now().isoformat(),
            "text": text[:100] + "..." if len(text) > 100 else text,
            "full_text": text,
            "label": result.label.value,
            "confidence": result.confidence,
            "backend": backend,
            "raw_scores": result.raw_scores
        }
        
        self.entries.append(entry)
        
        if len(self.entries) > self.max_entries:
            self.entries = self.entries[-self.max_entries:]
    
    def get_recent_entries(self, count: int = 10) -> List[Dict[str, Any]]:
        return self.entries[-count:] if self.entries else []
    
    def get_statistics(self) -> Dict[str, Any]:
        if not self.entries:
            return {
                "total_analyses": 0,
                "label_distribution": {},
                "average_confidence": 0.0,
                "backend_usage": {}
            }
        
        labels = [entry["label"] for entry in self.entries]
        confidences = [entry["confidence"] for entry in self.entries]
        backends = [entry["backend"] for entry in self.entries]
        
        label_counts = {
            "positive": labels.count("positive"),
            "negative": labels.count("negative"),
            "neutral": labels.count("neutral")
        }
        
        backend_counts = {}
        for backend in backends:
            backend_counts[backend] = backend_counts.get(backend, 0) + 1
        
        return {
            "total_analyses": len(self.entries),
            "label_distribution": label_counts,
            "average_confidence": sum(confidences) / len(confidences),
            "backend_usage": backend_counts
        }


class GradioInterface:
    """Gradio web interface for sentiment analysis."""
    
    def __init__(self, title: str = "Sentiment Analysis Server", 
                 description: str = "Analyze text sentiment using TextBlob or Transformers"):
        self.title = title
        self.description = description
        self.logger = logging.getLogger(__name__)
        self.history = SentimentHistory()
        self.interface = None
        self._setup_interface()
    
    def _setup_interface(self) -> None:
        if not GRADIO_AVAILABLE:
            raise RuntimeError("Gradio not available")
        
        with gr.Blocks(
            theme=gr.themes.Soft(),
            title=self.title
        ) as interface:
            
            gr.Markdown(f"# {self.title}")
            gr.Markdown(f"*{self.description}*")
            
            with gr.Tabs():
                with gr.TabItem("Sentiment Analysis"):
                    with gr.Row():
                        with gr.Column(scale=2):
                            text_input = gr.Textbox(
                                label="Text to Analyze",
                                placeholder="Enter text here to analyze its sentiment...",
                                lines=4
                            )
                            
                            with gr.Row():
                                backend_choice = gr.Dropdown(
                                    choices=["auto", "textblob", "transformers"],
                                    value="auto",
                                    label="Analysis Backend"
                                )
                                
                                analyze_btn = gr.Button(
                                    "Analyze Sentiment",
                                    variant="primary"
                                )
                        
                        with gr.Column(scale=1):
                            result_display = gr.HTML(
                                value="<p>Enter text and click 'Analyze Sentiment' to see results.</p>"
                            )
                            
                            confidence_plot = gr.Plot(visible=False)
                    
                    gr.Markdown("### Quick Examples")
                    with gr.Row():
                        pos_btn = gr.Button("😊 Positive", size="sm")
                        neu_btn = gr.Button("😐 Neutral", size="sm")
                        neg_btn = gr.Button("😞 Negative", size="sm")
                        mix_btn = gr.Button("πŸ“ Mixed", size="sm")
                
                with gr.TabItem("Batch Analysis"):
                    with gr.Row():
                        with gr.Column():
                            batch_input = gr.Textbox(
                                label="Texts to Analyze (one per line)",
                                placeholder="Enter multiple texts, one per line...",
                                lines=8
                            )
                            
                            with gr.Row():
                                batch_backend = gr.Dropdown(
                                    choices=["auto", "textblob", "transformers"],
                                    value="auto",
                                    label="Analysis Backend"
                                )
                                
                                batch_analyze_btn = gr.Button(
                                    "Analyze Batch",
                                    variant="primary"
                                )
                        
                        with gr.Column():
                            batch_results = gr.DataFrame(
                                label="Batch Results",
                                headers=["Text", "Sentiment", "Confidence"]
                            )
                            
                            batch_summary_plot = gr.Plot(visible=False)
                
                with gr.TabItem("Analysis History"):
                    with gr.Row():
                        refresh_history_btn = gr.Button("Refresh History", variant="secondary")
                        clear_history_btn = gr.Button("Clear History", variant="stop")
                    
                    with gr.Row():
                        with gr.Column(scale=2):
                            history_table = gr.DataFrame(
                                label="Recent Analyses",
                                headers=["Time", "Text", "Sentiment", "Confidence", "Backend"]
                            )
                        
                        with gr.Column(scale=1):
                            stats_display = gr.HTML(value="<p>No analyses yet.</p>")
                            history_plot = gr.Plot(visible=False)
                
                with gr.TabItem("Settings & Info"):
                    with gr.Row():
                        with gr.Column():
                            gr.Markdown("### Backend Information")
                            backend_info = gr.HTML(value="<p>Loading backend information...</p>")
                            refresh_info_btn = gr.Button("Refresh Info", variant="secondary")
                        
                        with gr.Column():
                            gr.Markdown("### Usage Tips")
                            gr.Markdown("""
                            - **Auto**: Automatically selects the best available backend
                            - **TextBlob**: Fast, simple sentiment analysis
                            - **Transformers**: More accurate, AI-powered analysis
                            - **Batch Analysis**: Process multiple texts at once
                            - **History**: Track your analysis results over time
                            """)
            
            # Event handlers
            def analyze_sentiment(text: str, backend: str) -> Tuple[str, gr.Plot]:
                return asyncio.run(self._analyze_sentiment_async(text, backend))
            
            def analyze_batch(texts: str, backend: str) -> Tuple[pd.DataFrame, gr.Plot]:
                return asyncio.run(self._analyze_batch_async(texts, backend))
            
            def refresh_history() -> Tuple[pd.DataFrame, str, gr.Plot]:
                return self._get_history_data()
            
            def clear_history() -> Tuple[pd.DataFrame, str, gr.Plot]:
                self.history.entries.clear()
                return self._get_history_data()
            
            def get_backend_info() -> str:
                return asyncio.run(self._get_backend_info_async())
            
            def get_mcp_schema() -> str:
                """Get MCP tools schema as JSON."""
                return asyncio.run(self._get_mcp_schema_async())
            
            # Example texts
            examples = [
                "I absolutely love this new feature! It's incredible and makes everything so much easier.",
                "The weather is okay today, nothing particularly special about it.",
                "This is terrible and frustrating. I hate how complicated this has become.",
                "The movie had great visuals but the plot was disappointing. Mixed feelings overall."
            ]
            
            # Wire up events
            analyze_btn.click(
                analyze_sentiment,
                inputs=[text_input, backend_choice],
                outputs=[result_display, confidence_plot]
            )
            
            batch_analyze_btn.click(
                analyze_batch,
                inputs=[batch_input, batch_backend],
                outputs=[batch_results, batch_summary_plot]
            )
            
            refresh_history_btn.click(
                refresh_history,
                outputs=[history_table, stats_display, history_plot]
            )
            
            clear_history_btn.click(
                clear_history,
                outputs=[history_table, stats_display, history_plot]
            )
            
            refresh_info_btn.click(
                get_backend_info,
                outputs=[backend_info]
            )
            
            # Example buttons
            pos_btn.click(lambda: examples[0], outputs=[text_input])
            neu_btn.click(lambda: examples[1], outputs=[text_input])
            neg_btn.click(lambda: examples[2], outputs=[text_input])
            mix_btn.click(lambda: examples[3], outputs=[text_input])
            
            # Load initial data
            interface.load(get_backend_info, outputs=[backend_info])
            interface.load(refresh_history, outputs=[history_table, stats_display, history_plot])
        
        self.interface = interface
    
    async def _analyze_sentiment_async(self, text: str, backend: str) -> Tuple[str, gr.Plot]:
        try:
            if not text.strip():
                return "<p>Please enter some text to analyze.</p>", gr.Plot(visible=False)
            
            analyzer = await get_analyzer(backend)
            result = await analyzer.analyze(text)
            
            self.history.add_entry(text, result, analyzer.backend)
            
            sentiment_class = f"sentiment-{result.label.value}"
            confidence_class = (
                "confidence-high" if result.confidence > 0.7 
                else "confidence-medium" if result.confidence > 0.4 
                else "confidence-low"
            )
            
            html_result = f"""
            <div style="padding: 1rem; border-radius: 0.5rem; background: #f8fafc; border-left: 4px solid #3b82f6;">
                <h3>Analysis Result</h3>
                <p><strong>Sentiment:</strong> <span style="color: {'#22c55e' if result.label.value == 'positive' else '#ef4444' if result.label.value == 'negative' else '#6b7280'}; font-weight: bold;">{result.label.value.title()}</span></p>
                <p><strong>Confidence:</strong> <span style="color: {'#059669' if result.confidence > 0.7 else '#d97706' if result.confidence > 0.4 else '#dc2626'};">{result.confidence:.2%}</span></p>
                <p><strong>Backend:</strong> {analyzer.backend}</p>
                <p><strong>Text Length:</strong> {len(text)} characters</p>
            </div>
            """
            
            plot = self._create_confidence_plot(result)
            return html_result, plot
            
        except Exception as e:
            self.logger.error(f"Analysis failed: {e}")
            error_html = f"""
            <div style="padding: 1rem; border-radius: 0.5rem; background: #fef2f2; border-left: 4px solid #ef4444;">
                <h3>Analysis Error</h3>
                <p><strong>Error:</strong> {str(e)}</p>
                <p>Please try again or check your input.</p>
            </div>
            """
            return error_html, gr.Plot(visible=False)
    
    async def _analyze_batch_async(self, texts: str, backend: str) -> Tuple[pd.DataFrame, gr.Plot]:
        try:
            if not texts.strip():
                return pd.DataFrame(), gr.Plot(visible=False)
            
            text_list = [t.strip() for t in texts.split('\n') if t.strip()]
            
            if not text_list:
                return pd.DataFrame(), gr.Plot(visible=False)
            
            analyzer = await get_analyzer(backend)
            results = await analyzer.analyze_batch(text_list)
            
            data = []
            for text, result in zip(text_list, results):
                self.history.add_entry(text, result, analyzer.backend)
                
                data.append({
                    "Text": text[:50] + "..." if len(text) > 50 else text,
                    "Sentiment": result.label.value.title(),
                    "Confidence": f"{result.confidence:.2%}"
                })
            
            df = pd.DataFrame(data)
            plot = self._create_batch_summary_plot(results)
            
            return df, plot
            
        except Exception as e:
            self.logger.error(f"Batch analysis failed: {e}")
            return pd.DataFrame([{"Error": str(e)}]), gr.Plot(visible=False)
    
    def _create_confidence_plot(self, result: SentimentResult) -> gr.Plot:
        try:
            fig = go.Figure(go.Indicator(
                mode="gauge+number",
                value=result.confidence * 100,
                domain={'x': [0, 1], 'y': [0, 1]},
                title={'text': f"Confidence - {result.label.value.title()}"},
                gauge={
                    'axis': {'range': [None, 100]},
                    'bar': {'color': "darkblue"},
                    'steps': [
                        {'range': [0, 40], 'color': "lightgray"},
                        {'range': [40, 70], 'color': "yellow"},
                        {'range': [70, 100], 'color': "green"}
                    ]
                }
            ))
            
            fig.update_layout(height=300, margin=dict(l=20, r=20, t=40, b=20))
            return gr.Plot(value=fig, visible=True)
            
        except Exception as e:
            self.logger.error(f"Failed to create confidence plot: {e}")
            return gr.Plot(visible=False)
    
    def _create_batch_summary_plot(self, results: List[SentimentResult]) -> gr.Plot:
        try:
            labels = [result.label.value for result in results]
            label_counts = {
                "Positive": labels.count("positive"),
                "Negative": labels.count("negative"),
                "Neutral": labels.count("neutral")
            }
            
            fig = px.pie(
                values=list(label_counts.values()),
                names=list(label_counts.keys()),
                title="Sentiment Distribution",
                color_discrete_map={
                    "Positive": "#22c55e",
                    "Negative": "#ef4444",
                    "Neutral": "#6b7280"
                }
            )
            
            fig.update_layout(height=300, margin=dict(l=20, r=20, t=40, b=20))
            return gr.Plot(value=fig, visible=True)
            
        except Exception as e:
            self.logger.error(f"Failed to create batch summary plot: {e}")
            return gr.Plot(visible=False)
    
    def _get_history_data(self) -> Tuple[pd.DataFrame, str, gr.Plot]:
        try:
            entries = self.history.get_recent_entries(20)
            
            if not entries:
                empty_df = pd.DataFrame(columns=["Time", "Text", "Sentiment", "Confidence", "Backend"])
                return empty_df, "<p>No analyses yet.</p>", gr.Plot(visible=False)
            
            data = []
            for entry in reversed(entries):
                data.append({
                    "Time": entry["timestamp"][:19].replace("T", " "),
                    "Text": entry["text"],
                    "Sentiment": entry["label"].title(),
                    "Confidence": f"{entry['confidence']:.2%}",
                    "Backend": entry["backend"]
                })
            
            df = pd.DataFrame(data)
            stats = self.history.get_statistics()
            
            stats_html = f"""
            <div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; padding: 1rem; border-radius: 0.5rem;">
                <h3>πŸ“Š Analysis Statistics</h3>
                <p><strong>Total Analyses:</strong> {stats['total_analyses']}</p>
                <p><strong>Average Confidence:</strong> {stats['average_confidence']:.2%}</p>
                <h4>Sentiment Distribution:</h4>
                <ul>
                    <li>Positive: {stats['label_distribution'].get('positive', 0)}</li>
                    <li>Negative: {stats['label_distribution'].get('negative', 0)}</li>
                    <li>Neutral: {stats['label_distribution'].get('neutral', 0)}</li>
                </ul>
            </div>
            """
            
            plot = self._create_history_plot(stats) if stats['total_analyses'] > 0 else gr.Plot(visible=False)
            return df, stats_html, plot
            
        except Exception as e:
            self.logger.error(f"Failed to get history data: {e}")
            error_df = pd.DataFrame([{"Error": str(e)}])
            return error_df, f"<p>Error loading history: {e}</p>", gr.Plot(visible=False)
    
    def _create_history_plot(self, stats: Dict[str, Any]) -> gr.Plot:
        try:
            labels = list(stats['label_distribution'].keys())
            values = list(stats['label_distribution'].values())
            
            fig = px.bar(
                x=[label.title() for label in labels],
                y=values,
                title="Historical Sentiment Distribution",
                color=labels,
                color_discrete_map={
                    "positive": "#22c55e",
                    "negative": "#ef4444",
                    "neutral": "#6b7280"
                }
            )
            
            fig.update_layout(height=300, margin=dict(l=20, r=20, t=40, b=20), showlegend=False)
            return gr.Plot(value=fig, visible=True)
            
        except Exception as e:
            self.logger.error(f"Failed to create history plot: {e}")
            return gr.Plot(visible=False)
    
    async def _get_backend_info_async(self) -> str:
        try:
            analyzer = await get_analyzer("auto")
            info = analyzer.get_info()
            
            html = f"""
            <div style="padding: 1rem; border-radius: 0.5rem; background: #f0f9ff; border-left: 4px solid #0ea5e9;">
                <h3>πŸ”§ Backend Information</h3>
                <p><strong>Current Backend:</strong> {info['backend']}</p>
                <p><strong>Model Loaded:</strong> {'Yes' if info['model_loaded'] else 'No'}</p>
                <p><strong>TextBlob Available:</strong> {'Yes' if info['textblob_available'] else 'No'}</p>
                <p><strong>Transformers Available:</strong> {'Yes' if info['transformers_available'] else 'No'}</p>
                <p><strong>CUDA Available:</strong> {'Yes' if info.get('cuda_available', False) else 'No'}</p>
                {f"<p><strong>Model Name:</strong> {info['model_name']}</p>" if info.get('model_name') else ""}
            </div>
            """
            return html
            
        except Exception as e:
            self.logger.error(f"Failed to get backend info: {e}")
            return f"""
            <div style="padding: 1rem; border-radius: 0.5rem; background: #fef2f2; border-left: 4px solid #ef4444;">
                <h3>❌ Backend Error</h3>
                <p>Failed to load backend information: {str(e)}</p>
            </div>
            """
    
    async def _get_mcp_schema_async(self) -> str:
        """Get MCP tools schema as formatted JSON."""
        try:
            tools = await list_tools()
            schema = {
                "mcp_version": "2024-11-05",
                "server_info": {
                    "name": "sentiment-analyzer",
                    "version": "1.0.0",
                    "description": "Sentiment analysis server using TextBlob and Transformers"
                },
                "tools": tools,
                "total_tools": len(tools)
            }
            return json.dumps(schema, indent=2)
            
        except Exception as e:
            self.logger.error(f"Failed to get MCP schema: {e}")
            return json.dumps({
                "error": str(e),
                "error_type": type(e).__name__
            }, indent=2)
    
    def launch(self, **kwargs) -> None:
        if not self.interface:
            raise RuntimeError("Interface not initialized")
        
        # Check for MCP server mode from environment variable or parameter
        mcp_server_enabled = (
            kwargs.get("mcp_server", False) or 
            os.getenv("GRADIO_MCP_SERVER", "").lower() in ("true", "1", "yes", "on")
        )
        
        launch_params = {
            "server_name": "0.0.0.0",
            "server_port": 7860,
            "share": False,
            "debug": False,
            "show_error": True,
            "quiet": False
        }
        
        # Add MCP server parameter if enabled
        if mcp_server_enabled:
            launch_params["mcp_server"] = True
            self.logger.info("MCP server functionality enabled for Gradio interface")
        
        launch_params.update(kwargs)
        
        self.logger.info(f"Launching Gradio interface on {launch_params['server_name']}:{launch_params['server_port']}")
        if mcp_server_enabled:
            self.logger.info("Gradio interface will also serve as MCP server with API endpoints")
        
        try:
            self.interface.launch(**launch_params)
        except Exception as e:
            self.logger.error(f"Failed to launch interface: {e}")
            raise


def create_gradio_interface(**kwargs) -> GradioInterface:
    if not GRADIO_AVAILABLE:
        raise RuntimeError("Gradio not available. Install with: pip install gradio")
    
    return GradioInterface(**kwargs)


async def main() -> None:
    logging.basicConfig(
        level=logging.INFO,
        format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
    )
    
    interface = create_gradio_interface()
    interface.launch(debug=True)


if __name__ == "__main__":
    asyncio.run(main())