File size: 14,151 Bytes
776e7c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
"""
MCP tool definitions for sentiment analysis server.
This module defines the tools available through the Model Context Protocol,
including sentiment analysis, batch processing, and analyzer information tools.
"""
import logging
from typing import Dict, Any, List, Optional
from pydantic import BaseModel, Field
import asyncio
from .sentiment_analyzer import get_analyzer, SentimentAnalyzer
class SentimentAnalysisInput(BaseModel):
"""Input schema for sentiment analysis tool."""
text: str = Field(..., description="Text to analyze for sentiment", min_length=1, max_length=10000)
backend: Optional[str] = Field("auto", description="Analysis backend: 'textblob', 'transformers', or 'auto'")
class BatchSentimentAnalysisInput(BaseModel):
"""Input schema for batch sentiment analysis tool."""
texts: List[str] = Field(..., description="List of texts to analyze for sentiment", min_items=1, max_items=100)
backend: Optional[str] = Field("auto", description="Analysis backend: 'textblob', 'transformers', or 'auto'")
class AnalyzerInfoInput(BaseModel):
"""Input schema for analyzer info tool."""
backend: Optional[str] = Field("auto", description="Backend to get info for")
class MCPTools:
"""
MCP tool registry and handlers for sentiment analysis.
This class manages the registration and execution of tools available
through the Model Context Protocol interface.
"""
def __init__(self):
self.logger = logging.getLogger(__name__)
self._tools = {}
self._register_tools()
def _register_tools(self) -> None:
"""Register all available MCP tools."""
self._tools = {
"analyze_sentiment": {
"name": "analyze_sentiment",
"description": "Analyze the sentiment of a given text",
"inputSchema": {
"type": "object",
"properties": {
"text": {
"type": "string",
"description": "Text to analyze for sentiment",
"minLength": 1,
"maxLength": 10000
},
"backend": {
"type": "string",
"description": "Analysis backend: 'textblob', 'transformers', or 'auto'",
"enum": ["textblob", "transformers", "auto"],
"default": "auto"
}
},
"required": ["text"]
},
"handler": self._handle_analyze_sentiment
},
"analyze_sentiment_batch": {
"name": "analyze_sentiment_batch",
"description": "Analyze sentiment for multiple texts in batch",
"inputSchema": {
"type": "object",
"properties": {
"texts": {
"type": "array",
"description": "List of texts to analyze for sentiment",
"items": {
"type": "string",
"minLength": 1,
"maxLength": 10000
},
"minItems": 1,
"maxItems": 100
},
"backend": {
"type": "string",
"description": "Analysis backend: 'textblob', 'transformers', or 'auto'",
"enum": ["textblob", "transformers", "auto"],
"default": "auto"
}
},
"required": ["texts"]
},
"handler": self._handle_analyze_sentiment_batch
},
"get_analyzer_info": {
"name": "get_analyzer_info",
"description": "Get information about the sentiment analyzer configuration",
"inputSchema": {
"type": "object",
"properties": {
"backend": {
"type": "string",
"description": "Backend to get info for",
"enum": ["textblob", "transformers", "auto"],
"default": "auto"
}
},
"required": []
},
"handler": self._handle_get_analyzer_info
},
"health_check": {
"name": "health_check",
"description": "Check the health status of the sentiment analysis service",
"inputSchema": {
"type": "object",
"properties": {},
"required": []
},
"handler": self._handle_health_check
}
}
self.logger.info(f"Registered {len(self._tools)} MCP tools")
def get_tools(self) -> List[Dict[str, Any]]:
"""
Get list of available tools for MCP protocol.
Returns:
List of tool definitions
"""
return [
{
"name": tool["name"],
"description": tool["description"],
"inputSchema": tool["inputSchema"]
}
for tool in self._tools.values()
]
async def call_tool(self, name: str, arguments: Dict[str, Any]) -> Dict[str, Any]:
"""
Call a registered tool with given arguments.
Args:
name: Tool name
arguments: Tool arguments
Returns:
Tool execution result
Raises:
ValueError: If tool not found or arguments invalid
RuntimeError: If tool execution fails
"""
if name not in self._tools:
raise ValueError(f"Tool '{name}' not found. Available tools: {list(self._tools.keys())}")
tool = self._tools[name]
handler = tool["handler"]
try:
self.logger.info(f"Calling tool '{name}' with arguments: {arguments}")
result = await handler(arguments)
self.logger.info(f"Tool '{name}' completed successfully")
return result
except Exception as e:
self.logger.error(f"Tool '{name}' failed: {e}")
raise RuntimeError(f"Tool execution failed: {e}")
async def _handle_analyze_sentiment(self, arguments: Dict[str, Any]) -> Dict[str, Any]:
"""
Handle sentiment analysis tool call.
Args:
arguments: Tool arguments containing text and optional backend
Returns:
Sentiment analysis result
"""
try:
# Validate input
input_data = SentimentAnalysisInput(**arguments)
# Get analyzer and perform analysis
analyzer = await get_analyzer(input_data.backend)
result = await analyzer.analyze(input_data.text)
return {
"success": True,
"result": result.to_dict(),
"metadata": {
"backend": analyzer.backend,
"text_length": len(input_data.text),
"model_info": analyzer.get_info()
}
}
except Exception as e:
return {
"success": False,
"error": str(e),
"error_type": type(e).__name__
}
async def _handle_analyze_sentiment_batch(self, arguments: Dict[str, Any]) -> Dict[str, Any]:
"""
Handle batch sentiment analysis tool call.
Args:
arguments: Tool arguments containing texts and optional backend
Returns:
Batch sentiment analysis results
"""
try:
# Validate input
input_data = BatchSentimentAnalysisInput(**arguments)
# Get analyzer and perform batch analysis
analyzer = await get_analyzer(input_data.backend)
results = await analyzer.analyze_batch(input_data.texts)
# Convert results to dictionaries
result_dicts = [result.to_dict() for result in results]
# Calculate summary statistics
labels = [result.label.value for result in results]
label_counts = {
"positive": labels.count("positive"),
"negative": labels.count("negative"),
"neutral": labels.count("neutral")
}
avg_confidence = sum(result.confidence for result in results) / len(results)
return {
"success": True,
"results": result_dicts,
"summary": {
"total_texts": len(input_data.texts),
"label_distribution": label_counts,
"average_confidence": round(avg_confidence, 4)
},
"metadata": {
"backend": analyzer.backend,
"model_info": analyzer.get_info()
}
}
except Exception as e:
return {
"success": False,
"error": str(e),
"error_type": type(e).__name__
}
async def _handle_get_analyzer_info(self, arguments: Dict[str, Any]) -> Dict[str, Any]:
"""
Handle analyzer info tool call.
Args:
arguments: Tool arguments containing optional backend
Returns:
Analyzer configuration information
"""
try:
# Validate input
input_data = AnalyzerInfoInput(**arguments)
# Get analyzer info
analyzer = await get_analyzer(input_data.backend)
info = analyzer.get_info()
return {
"success": True,
"info": info,
"available_backends": ["textblob", "transformers", "auto"],
"recommended_backend": "transformers" if info.get("transformers_available") else "textblob"
}
except Exception as e:
return {
"success": False,
"error": str(e),
"error_type": type(e).__name__
}
async def _handle_health_check(self, arguments: Dict[str, Any]) -> Dict[str, Any]:
"""
Handle health check tool call.
Args:
arguments: Tool arguments (empty for health check)
Returns:
Health status information
"""
try:
# Test basic functionality
test_text = "This is a test message for health check."
analyzer = await get_analyzer("auto")
result = await analyzer.analyze(test_text)
return {
"success": True,
"status": "healthy",
"test_result": result.to_dict(),
"analyzer_info": analyzer.get_info(),
"timestamp": asyncio.get_event_loop().time()
}
except Exception as e:
return {
"success": False,
"status": "unhealthy",
"error": str(e),
"error_type": type(e).__name__,
"timestamp": asyncio.get_event_loop().time()
}
# Global tools instance
_global_tools: Optional[MCPTools] = None
def get_tools() -> MCPTools:
"""
Get or create global MCP tools instance.
Returns:
MCPTools instance
"""
global _global_tools
if _global_tools is None:
_global_tools = MCPTools()
return _global_tools
async def list_tools() -> List[Dict[str, Any]]:
"""
Get list of available MCP tools.
Returns:
List of tool definitions
"""
tools = get_tools()
return tools.get_tools()
async def call_tool(name: str, arguments: Dict[str, Any]) -> Dict[str, Any]:
"""
Call an MCP tool with given arguments.
Args:
name: Tool name
arguments: Tool arguments
Returns:
Tool execution result
"""
tools = get_tools()
return await tools.call_tool(name, arguments)
if __name__ == "__main__":
# Example usage
async def main():
tools = get_tools()
# List available tools
available_tools = tools.get_tools()
print("Available tools:")
for tool in available_tools:
print(f"- {tool['name']}: {tool['description']}")
print("\n" + "="*50 + "\n")
# Test sentiment analysis tool
result = await tools.call_tool("analyze_sentiment", {
"text": "I love this new feature! It's absolutely amazing!",
"backend": "textblob"
})
print("Sentiment analysis result:")
print(result)
print("\n" + "="*50 + "\n")
# Test batch analysis
batch_result = await tools.call_tool("analyze_sentiment_batch", {
"texts": [
"This is great!",
"I hate this.",
"It's okay, I guess."
],
"backend": "textblob"
})
print("Batch analysis result:")
print(batch_result)
print("\n" + "="*50 + "\n")
# Test health check
health_result = await tools.call_tool("health_check", {})
print("Health check result:")
print(health_result)
asyncio.run(main()) |