Spaces:
Running
Running
File size: 32,730 Bytes
e6541df a8131ef 010f6d4 e6541df 010f6d4 e6541df ca5dc36 90787b9 e6541df ca5dc36 e6541df ca5dc36 e6541df ca5dc36 e6541df ca5dc36 010f6d4 ca5dc36 e6541df ca5dc36 e6541df ca5dc36 e6541df ca5dc36 e6541df ca5dc36 e6541df ca5dc36 e6541df ca5dc36 e6541df ca5dc36 e6541df ca5dc36 e6541df ca5dc36 e6541df ca5dc36 e6541df ca5dc36 e6541df ca5dc36 e6541df ca5dc36 e6541df ca5dc36 e6541df ca5dc36 e6541df ca5dc36 e6541df ca5dc36 e6541df ca5dc36 a8131ef e6541df ca5dc36 e6541df ca5dc36 e6541df ca5dc36 e6541df ca5dc36 e6541df ca5dc36 e6541df ca5dc36 e6541df ca5dc36 e6541df 010f6d4 ca5dc36 e6541df ca5dc36 e6541df ca5dc36 010f6d4 ca5dc36 e6541df ca5dc36 e6541df ca5dc36 a8131ef ca5dc36 e6541df a8131ef ca5dc36 e6541df ca5dc36 e6541df ca5dc36 a8131ef ca5dc36 a8131ef ca5dc36 a8131ef ca5dc36 a8131ef ca5dc36 a8131ef ca5dc36 e6541df ca5dc36 e6541df 010f6d4 ca5dc36 e6541df 010f6d4 ca5dc36 010f6d4 e6541df ca5dc36 e6541df a8131ef ca5dc36 e6541df a8131ef ca5dc36 e6541df a8131ef ca5dc36 e6541df ca5dc36 90787b9 ca5dc36 e6541df ca5dc36 010f6d4 a8131ef ca5dc36 a8131ef ca5dc36 e6541df ca5dc36 010f6d4 ca5dc36 a8131ef ca5dc36 010f6d4 ca5dc36 010f6d4 ca5dc36 010f6d4 e6541df a8131ef ca5dc36 e6541df a8131ef ca5dc36 010f6d4 ca5dc36 010f6d4 ca5dc36 e6541df 90787b9 ef5e8b6 90787b9 ef5e8b6 90787b9 010f6d4 ef5e8b6 90787b9 010f6d4 90787b9 ef5e8b6 90787b9 ef5e8b6 90787b9 010f6d4 90787b9 010f6d4 90787b9 010f6d4 90787b9 e6541df ca5dc36 010f6d4 e6541df 010f6d4 ca5dc36 fceb8a5 ca5dc36 a8131ef fceb8a5 a8131ef fceb8a5 010f6d4 ca5dc36 e6541df 010f6d4 90787b9 a8131ef 90787b9 fceb8a5 010f6d4 fceb8a5 ca5dc36 e6541df 010f6d4 90787b9 a8131ef fceb8a5 ca5dc36 a8131ef fceb8a5 7ae48d4 90787b9 fceb8a5 010f6d4 fceb8a5 010f6d4 ca5dc36 fceb8a5 90787b9 fceb8a5 a8131ef fceb8a5 a8131ef 90787b9 fceb8a5 a8131ef 90787b9 fceb8a5 010f6d4 fceb8a5 010f6d4 fceb8a5 010f6d4 fceb8a5 ca5dc36 010f6d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 |
#!/usr/bin/env python3
"""
Hybrid AI Assistant - General Purpose + Healthcare Billing Expert
Enhanced with Emotional UI and Voice Input
"""
import os
import sys
import json
import logging
import re
from typing import Dict, Optional, Tuple, List, Any
from dataclasses import dataclass, field
from enum import Enum
import requests
import gradio as gr
from datetime import datetime
import random
import time
# Set up environment
os.environ['OPENROUTER_API_KEY'] = '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'
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# ============= Data Classes =============
@dataclass
class CodeInfo:
code: str
description: str
code_type: str
additional_info: Optional[str] = None
category: Optional[str] = None
@dataclass
class ConversationContext:
messages: List[Dict[str, str]] = field(default_factory=list)
detected_codes: List[str] = field(default_factory=list)
last_topic: Optional[str] = None
current_sentiment: str = "neutral"
sentiment_history: List[str] = field(default_factory=list)
class SentimentType(Enum):
VERY_POSITIVE = "very_positive"
POSITIVE = "positive"
NEUTRAL = "neutral"
NEGATIVE = "negative"
VERY_NEGATIVE = "very_negative"
ANXIOUS = "anxious"
FRUSTRATED = "frustrated"
EXCITED = "excited"
CONFUSED = "confused"
# ============= Healthcare Billing Database =============
class BillingCodesDB:
def __init__(self):
self.codes = {
'A0429': CodeInfo(
code='A0429',
description='Ambulance service, basic life support, emergency transport (BLS-emergency)',
code_type='HCPCS',
additional_info='Ground ambulance emergency transport with BLS level care. Used for emergency situations requiring immediate medical transport.',
category='Ambulance Services'
),
'A0428': CodeInfo(
code='A0428',
description='Ambulance service, basic life support, non-emergency transport',
code_type='HCPCS',
additional_info='Scheduled or non-urgent medical transport with basic life support.',
category='Ambulance Services'
),
'99213': CodeInfo(
code='99213',
description='Office visit for established patient, low complexity',
code_type='CPT',
additional_info='Typically 20-29 minutes. For straightforward medical issues.',
category='E&M Services'
),
'99214': CodeInfo(
code='99214',
description='Office visit for established patient, moderate complexity',
code_type='CPT',
additional_info='Typically 30-39 minutes. For moderately complex medical issues.',
category='E&M Services'
),
'99215': CodeInfo(
code='99215',
description='Office visit for established patient, high complexity',
code_type='CPT',
additional_info='Typically 40-54 minutes. For complex medical decision making.',
category='E&M Services'
),
'93000': CodeInfo(
code='93000',
description='Electrocardiogram (ECG/EKG) with interpretation',
code_type='CPT',
additional_info='Complete 12-lead ECG including test, interpretation, and report.',
category='Cardiovascular'
),
'DRG470': CodeInfo(
code='DRG470',
description='Major hip and knee joint replacement without complications',
code_type='DRG',
additional_info='Medicare payment group for joint replacement surgeries.',
category='Orthopedic'
),
'Z79.899': CodeInfo(
code='Z79.899',
description='Other long term drug therapy',
code_type='ICD-10',
additional_info='Indicates patient is on long-term medication.',
category='Diagnosis'
),
'E1399': CodeInfo(
code='E1399',
description='Durable medical equipment, miscellaneous',
code_type='HCPCS',
additional_info='For DME not elsewhere classified.',
category='Equipment'
),
'J3420': CodeInfo(
code='J3420',
description='Vitamin B-12 injection',
code_type='HCPCS',
additional_info='Cyanocobalamin up to 1000 mcg.',
category='Injections'
),
'80053': CodeInfo(
code='80053',
description='Comprehensive metabolic panel',
code_type='CPT',
additional_info='14 blood tests including glucose, kidney, and liver function.',
category='Laboratory'
),
'70450': CodeInfo(
code='70450',
description='CT head/brain without contrast',
code_type='CPT',
additional_info='Computed tomography of head without contrast material.',
category='Radiology'
),
'90837': CodeInfo(
code='90837',
description='Psychotherapy, 60 minutes',
code_type='CPT',
additional_info='Individual psychotherapy session.',
category='Mental Health'
),
'36415': CodeInfo(
code='36415',
description='Venipuncture (blood draw)',
code_type='CPT',
additional_info='Collection of blood by needle.',
category='Laboratory'
),
'99282': CodeInfo(
code='99282',
description='Emergency department visit, low-moderate severity',
code_type='CPT',
additional_info='ED visit for problems of low to moderate severity.',
category='Emergency'
)
}
def lookup(self, code: str) -> Optional[CodeInfo]:
code = code.strip().upper()
if code in self.codes:
return self.codes[code]
if code.isdigit() and len(code) == 3:
drg_code = f"DRG{code}"
if drg_code in self.codes:
return self.codes[drg_code]
return None
def search_codes(self, text: str) -> List[str]:
"""Extract potential billing codes from text"""
found_codes = []
patterns = [
r'\b([A-V][0-9]{4})\b', # HCPCS
r'\b([0-9]{5})\b', # CPT
r'\bDRG\s*([0-9]{3})\b', # DRG
r'\b([A-Z][0-9]{2}\.?[0-9]{0,3})\b', # ICD-10
]
for pattern in patterns:
matches = re.findall(pattern, text.upper())
for match in matches:
if self.lookup(match):
found_codes.append(match)
return found_codes
# ============= Sentiment Analysis =============
class SentimentAnalyzer:
def __init__(self):
self.positive_words = ['great', 'awesome', 'excellent', 'fantastic', 'wonderful', 'amazing', 'perfect', 'love', 'happy', 'excited', 'thank', 'thanks', 'good', 'nice', 'brilliant', 'outstanding']
self.negative_words = ['terrible', 'awful', 'horrible', 'bad', 'worst', 'hate', 'frustrated', 'angry', 'sad', 'disappointed', 'upset', 'confused', 'difficult', 'problem', 'issue', 'error', 'wrong']
self.anxious_words = ['worried', 'concerned', 'nervous', 'anxious', 'scared', 'afraid', 'stress', 'panic', 'uncertain', 'unsure']
self.excited_words = ['excited', 'thrilled', 'amazing', 'wow', 'incredible', 'fantastic', 'brilliant', 'awesome']
def analyze_sentiment(self, text: str) -> SentimentType:
text_lower = text.lower()
positive_count = sum(1 for word in self.positive_words if word in text_lower)
negative_count = sum(1 for word in self.negative_words if word in text_lower)
anxious_count = sum(1 for word in self.anxious_words if word in text_lower)
excited_count = sum(1 for word in self.excited_words if word in text_lower)
# Check for question marks (confusion indicator)
question_marks = text.count('?')
exclamation_marks = text.count('!')
# Determine sentiment
if excited_count > 0 or exclamation_marks > 1:
return SentimentType.EXCITED
elif anxious_count > 0:
return SentimentType.ANXIOUS
elif question_marks > 1 and negative_count > 0:
return SentimentType.CONFUSED
elif negative_count > positive_count and negative_count > 1:
return SentimentType.VERY_NEGATIVE if negative_count > 2 else SentimentType.NEGATIVE
elif positive_count > negative_count and positive_count > 1:
return SentimentType.VERY_POSITIVE if positive_count > 2 else SentimentType.POSITIVE
elif 'frustrated' in text_lower or 'frustrating' in text_lower:
return SentimentType.FRUSTRATED
else:
return SentimentType.NEUTRAL
# ============= AI Assistant Class =============
class HybridAIAssistant:
def __init__(self):
self.api_key = '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'
self.billing_db = BillingCodesDB()
self.sentiment_analyzer = SentimentAnalyzer()
self.context = ConversationContext()
self.headers = {
'Authorization': f'Bearer {self.api_key}',
'Content-Type': 'application/json',
'HTTP-Referer': 'https://huggingface.co',
'X-Title': 'Hybrid AI Assistant'
}
def detect_intent(self, message: str) -> Dict[str, Any]:
"""Detect if the message is about billing codes or general conversation"""
lower_msg = message.lower()
# Check for billing codes in the message
codes = self.billing_db.search_codes(message)
# Keywords that suggest billing/medical coding questions
billing_keywords = ['code', 'cpt', 'hcpcs', 'icd', 'drg', 'billing', 'medical code',
'healthcare code', 'diagnosis code', 'procedure code']
is_billing = any(keyword in lower_msg for keyword in billing_keywords) or len(codes) > 0
return {
'is_billing': is_billing,
'codes_found': codes,
'message': message
}
def handle_billing_query(self, message: str, codes: List[str]) -> str:
"""Handle healthcare billing specific queries"""
responses = []
if codes:
for code in codes[:3]: # Limit to first 3 codes
info = self.billing_db.lookup(code)
if info:
response = f"**{info.code} ({info.code_type})**\n"
response += f"π **Description:** {info.description}\n"
if info.additional_info:
response += f"βΉοΈ **Details:** {info.additional_info}\n"
if info.category:
response += f"π·οΈ **Category:** {info.category}\n"
responses.append(response)
if responses:
final_response = "I found information about the billing code(s) you mentioned:\n\n"
final_response += "\n---\n".join(responses)
final_response += "\n\nπ‘ **Need more details?** Feel free to ask specific questions about these codes!"
return final_response
else:
return self.get_general_response(message, billing_context=True)
def get_empathetic_response_prefix(self, sentiment: SentimentType) -> str:
"""Generate empathetic response based on sentiment"""
prefixes = {
SentimentType.VERY_POSITIVE: "I'm so glad to hear your enthusiasm! π ",
SentimentType.POSITIVE: "That's wonderful! π ",
SentimentType.EXCITED: "I can feel your excitement! π ",
SentimentType.ANXIOUS: "I understand this might be causing some concern. Let me help ease your worries. π€ ",
SentimentType.FRUSTRATED: "I can sense your frustration, and I'm here to help make this easier for you. π ",
SentimentType.CONFUSED: "No worries, I'm here to clear things up for you! π§ ",
SentimentType.NEGATIVE: "I hear that you're having some difficulties. Let me help you with that. π ",
SentimentType.VERY_NEGATIVE: "I'm really sorry you're going through this. I'm here to support you. β€οΈ ",
SentimentType.NEUTRAL: ""
}
return prefixes.get(sentiment, "")
def get_general_response(self, message: str, billing_context: bool = False) -> str:
"""Get response from OpenRouter API for general queries"""
# Analyze sentiment
sentiment = self.sentiment_analyzer.analyze_sentiment(message)
self.context.current_sentiment = sentiment.value
self.context.sentiment_history.append(sentiment.value)
# Keep only last 10 sentiments
if len(self.context.sentiment_history) > 10:
self.context.sentiment_history = self.context.sentiment_history[-10:]
# Prepare system prompt with empathy
system_prompt = """You are a helpful, friendly, and empathetic AI assistant with expertise in healthcare billing codes.
You can assist with any topic - from casual conversation to complex questions.
When discussing medical billing codes, you provide accurate, detailed information.
Be conversational, helpful, and engaging. Show empathy and understanding.
Adapt your tone based on the user's emotional state - be more supportive if they seem frustrated or anxious."""
if billing_context:
system_prompt += "\nThe user is asking about medical billing. Provide helpful information even if you don't have specific code details."
# Build conversation history for context
messages = [{'role': 'system', 'content': system_prompt}]
# Add recent conversation history (last 5 exchanges)
for msg in self.context.messages[-10:]:
messages.append(msg)
# Add current message
messages.append({'role': 'user', 'content': message})
try:
response = requests.post(
'https://openrouter.ai/api/v1/chat/completions',
headers=self.headers,
json={
'model': 'openai/gpt-3.5-turbo',
'messages': messages,
'temperature': 0.7,
'max_tokens': 500,
'stream': False
},
timeout=30
)
if response.status_code == 200:
result = response.json()
ai_response = result['choices'][0]['message']['content']
# Add empathetic prefix based on sentiment
empathy_prefix = self.get_empathetic_response_prefix(sentiment)
if empathy_prefix:
ai_response = empathy_prefix + ai_response
# Update context
self.context.messages.append({'role': 'user', 'content': message})
self.context.messages.append({'role': 'assistant', 'content': ai_response})
# Keep only last 20 messages in context
if len(self.context.messages) > 20:
self.context.messages = self.context.messages[-20:]
return ai_response
else:
logger.error(f"API error: {response.status_code}")
return self.get_fallback_response(message)
except Exception as e:
logger.error(f"Request failed: {e}")
return self.get_fallback_response(message)
def get_fallback_response(self, message: str) -> str:
"""Fallback responses when API fails"""
sentiment = self.sentiment_analyzer.analyze_sentiment(message)
empathy_prefix = self.get_empathetic_response_prefix(sentiment)
fallbacks = [
"I'm having trouble connecting right now, but I'm still here to help! Could you rephrase your question?",
"Let me think about that differently. What specific aspect would you like to know more about?",
"That's an interesting question! While I process that, is there anything specific you'd like to explore?",
"I'm here to help! Could you provide a bit more detail about what you're looking for?"
]
return empathy_prefix + random.choice(fallbacks)
def process_message(self, message: str) -> Tuple[str, str]:
"""Main method to process any message and return response with sentiment"""
if not message.strip():
return "Feel free to ask me anything! I can help with general questions or healthcare billing codes. π", "neutral"
# Detect intent
intent = self.detect_intent(message)
# Route to appropriate handler
if intent['is_billing'] and intent['codes_found']:
response = self.handle_billing_query(message, intent['codes_found'])
else:
response = self.get_general_response(message, billing_context=intent['is_billing'])
return response, self.context.current_sentiment
def reset_context(self):
"""Reset conversation context"""
self.context = ConversationContext()
# ============= Global Assistant Instance =============
assistant = HybridAIAssistant()
# ============= Chat Functions =============
def respond(message, history):
"""Response function for ChatInterface"""
if not message.strip():
return "Feel free to ask me anything! I can help with general questions or healthcare billing codes. π"
# Process message and get sentiment
response, sentiment = assistant.process_message(message)
# Update UI based on sentiment (this will be handled by JavaScript)
return response
def process_voice_input(audio):
"""Process voice input and return text"""
if audio is None:
return "No audio received. Please try again."
# For now, return a placeholder message
# In a real implementation, you'd use speech recognition here
return "Voice input processed! (Speech recognition would be implemented here)"
def reset_chat():
"""Reset the conversation context"""
assistant.reset_context()
return []
# ============= Examples =============
examples = [
"What is healthcare billing code A0429?",
"Can you explain CPT code 99213 in detail?",
"Tell me about DRG 470",
"I'm feeling frustrated with this billing issue",
"This is confusing, can you help me understand?",
"Thank you so much! This is exactly what I needed!",
"How does artificial intelligence work?",
"Give me a simple pasta recipe",
"Write a short poem about nature"
]
# ============= Create Interface =============
def create_interface():
"""Create the Gradio ChatInterface with Emotional UI and Voice Input"""
# Enhanced CSS with emotional UI and voice features
custom_css = """
/* Global Styles */
.gradio-container {
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', 'Helvetica Neue', Arial, sans-serif !important;
max-width: 1200px !important;
margin: auto !important;
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%) !important;
min-height: 100vh !important;
padding: 1rem !important;
transition: all 0.5s ease !important;
}
/* Emotional UI Color Schemes */
.sentiment-positive { background: linear-gradient(135deg, #84fab0 0%, #8fd3f4 100%) !important; }
.sentiment-very-positive { background: linear-gradient(135deg, #a8edea 0%, #fed6e3 100%) !important; }
.sentiment-negative { background: linear-gradient(135deg, #d299c2 0%, #fef9d7 100%) !important; }
.sentiment-very-negative { background: linear-gradient(135deg, #ff9a9e 0%, #fecfef 100%) !important; }
.sentiment-anxious { background: linear-gradient(135deg, #ffecd2 0%, #fcb69f 100%) !important; }
.sentiment-frustrated { background: linear-gradient(135deg, #ff8a80 0%, #ffad80 100%) !important; }
.sentiment-excited { background: linear-gradient(135deg, #ffd89b 0%, #19547b 100%) !important; }
.sentiment-confused { background: linear-gradient(135deg, #a8caba 0%, #5d4e75 100%) !important; }
/* Enhanced Header with Mood Indicator */
.header-text {
text-align: center;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 3rem 2rem;
border-radius: 20px;
margin-bottom: 2rem;
box-shadow: 0 20px 40px rgba(102, 126, 234, 0.3);
position: relative;
overflow: hidden;
transition: all 0.5s ease;
}
.header-text::before {
content: '';
position: absolute;
top: -50%;
left: -50%;
width: 200%;
height: 200%;
background: radial-gradient(circle, rgba(255,255,255,0.1) 0%, transparent 70%);
animation: pulse 4s ease-in-out infinite;
}
@keyframes pulse {
0%, 100% { opacity: 0.3; }
50% { opacity: 0.6; }
}
/* Mood Indicator */
.mood-indicator {
position: absolute;
top: 1rem;
right: 1rem;
width: 60px;
height: 60px;
border-radius: 50%;
background: rgba(255,255,255,0.2);
backdrop-filter: blur(10px);
display: flex;
align-items: center;
justify-content: center;
font-size: 24px;
transition: all 0.5s ease;
animation: breathe 3s ease-in-out infinite;
}
@keyframes breathe {
0%, 100% { transform: scale(1); }
50% { transform: scale(1.05); }
}
.mood-positive { background: rgba(132, 250, 176, 0.3) !important; }
.mood-negative { background: rgba(255, 154, 158, 0.3) !important; }
.mood-anxious { background: rgba(255, 236, 210, 0.3) !important; }
.mood-excited { background: rgba(255, 216, 155, 0.3) !important; }
.header-text h1 {
margin: 0;
font-size: 3rem;
font-weight: 800;
display: flex;
align-items: center;
justify-content: center;
gap: 1rem;
position: relative;
z-index: 1;
text-shadow: 0 2px 4px rgba(0,0,0,0.2);
}
.header-text p {
margin: 1rem 0 0 0;
font-size: 1.2rem;
opacity: 0.95;
position: relative;
z-index: 1;
font-weight: 300;
}
.badge {
background: rgba(255,255,255,0.25) !important;
backdrop-filter: blur(10px);
border: 1px solid rgba(255,255,255,0.3);
animation: glow 2s ease-in-out infinite alternate;
}
@keyframes glow {
from { box-shadow: 0 0 5px rgba(255,255,255,0.3); }
to { box-shadow: 0 0 20px rgba(255,255,255,0.6); }
}
/* Voice Input Button */
.voice-btn {
background: linear-gradient(135deg, #ff6b6b 0%, #ee5a52 100%) !important;
color: white !important;
border: none !important;
border-radius: 50% !important;
width: 60px !important;
height: 60px !important;
font-size: 24px !important;
margin: 0.5rem !important;
transition: all 0.3s cubic-bezier(0.175, 0.885, 0.32, 1.275) !important;
box-shadow: 0 4px 15px rgba(255, 107, 107, 0.3) !important;
position: relative;
overflow: hidden;
}
.voice-btn:hover {
transform: scale(1.1) !important;
box-shadow: 0 8px 25px rgba(255, 107, 107, 0.5) !important;
}
.voice-btn.recording {
animation: recordPulse 1s ease-in-out infinite !important;
background: linear-gradient(135deg, #ff3030 0%, #ff1010 100%) !important;
}
@keyframes recordPulse {
0% { box-shadow: 0 0 0 0 rgba(255, 107, 107, 0.7); }
70% { box-shadow: 0 0 0 20px rgba(255, 107, 107, 0); }
100% { box-shadow: 0 0 0 0 rgba(255, 107, 107, 0); }
}
/* Chat Interface Styling with Emotional Feedback */
.gradio-chatinterface {
background: white !important;
border-radius: 20px !important;
box-shadow: 0 25px 50px rgba(0,0,0,0.15) !important;
padding: 2rem !important;
margin: 1rem 0 !important;
backdrop-filter: blur(10px) !important;
transition: all 0.5s ease !important;
}
.gradio-chatinterface.emotional-positive {
border: 2px solid rgba(132, 250, 176, 0.5) !important;
box-shadow: 0 25px 50px rgba(132, 250, 176, 0.2) !important;
}
.gradio-chatinterface.emotional-negative {
border: 2px solid rgba(255, 154, 158, 0.5) !important;
box-shadow: 0 25px 50px rgba(255, 154, 158, 0.2) !important;
}
/* Enhanced Buttons */
.reset-btn {
background: linear-gradient(135deg, #ff6b6b 0%, #ee5a52 100%) !important;
color: white !important;
border: none !important;
border-radius: 12px !important;
padding: 0.75rem 1.5rem !important;
font-weight: 600 !important;
margin: 0.5rem 0 !important;
transition: all 0.3s cubic-bezier(0.175, 0.885, 0.32, 1.275) !important;
box-shadow: 0 4px 15px rgba(255, 107, 107, 0.3) !important;
}
.reset-btn:hover {
background: linear-gradient(135deg, #ff5252 0%, #d32f2f 100%) !important;
transform: translateY(-2px) scale(1.02) !important;
box-shadow: 0 8px 25px rgba(255, 107, 107, 0.4) !important;
}
/* Example Buttons Enhancement */
.gradio-chatinterface .examples .example {
background: linear-gradient(135deg, #ffffff 0%, #f8fafc 100%) !important;
border: 2px solid #e2e8f0 !important;
border-radius: 15px !important;
padding: 0.75rem 1rem !important;
margin: 0.5rem !important;
transition: all 0.3s ease !important;
box-shadow: 0 2px 8px rgba(0,0,0,0.05) !important;
}
.gradio-chatinterface .examples .example:hover {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
color: white !important;
border-color: #667eea !important;
transform: translateY(-2px) !important;
box-shadow: 0 8px 20px rgba(102, 126, 234, 0.3) !important;
}
/* Enhanced Stats Cards */
.stats-container {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
gap: 1.5rem;
margin: 2rem 0;
}
.stat-card {
background: linear-gradient(135deg, #ffffff 0%, #f8fafc 100%);
border-radius: 16px;
padding: 2rem;
text-align: center;
box-shadow: 0 10px 30px rgba(0,0,0,0.1);
border: 1px solid #e2e8f0;
transition: all 0.3s ease;
position: relative;
overflow: hidden;
}
.stat-card::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
height: 4px;
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
}
.stat-card:hover {
transform: translateY(-5px);
box-shadow: 0 20px 40px rgba(0,0,0,0.15);
}
.stat-number {
font-size: 2.5rem;
font-weight: 800;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
margin-bottom: 0.5rem;
}
.stat-label {
color: #64748b;
font-size: 0.9rem;
font-weight: 500;
text-transform: uppercase;
letter-spacing: 1px;
}
/* Empathy Animations */
@keyframes empathyPulse {
0%, 100% { transform: scale(1); }
50% { transform: scale(1.02); }
}
@keyframes supportGlow {
0%, 100% { box-shadow: 0 0 10px rgba(102, 126, 234, 0.3); }
50% { box-shadow: 0 0 20px rgba(102, 126, 234, 0.6); }
}
.empathy-support {
animation: empathyPulse 2s ease-in-out infinite, supportGlow 3s ease-in-out infinite;
}
/* Voice Recognition Feedback */
.voice-feedback {
position: fixed;
bottom: 2rem;
right: 2rem;
background: rgba(102, 126, 234, 0.9);
color: white;
padding: 1rem 1.5rem;
border-radius: 50px;
backdrop-filter: blur(10px);
z-index: 1000;
animation: slideInRight 0.3s ease-out;
}
@keyframes slideInRight {
from { transform: translateX(100%); opacity: 0; }
to { transform: translateX(0); opacity: 1; }
}
/* Enhanced Accordion */
.gradio-accordion {
background: rgba(255,255,255,0.9) !important;
backdrop-filter: blur(10px) !important;
border-radius: 16px !important;
border: 1px solid rgba(255,255,255,0.2) !important;
box-shadow: 0 8px 25px rgba(0,0,0,0.1) !important;
margin: 1.5rem 0 !important;
}
/* Feature Cards */
.feature-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
gap: 1.5rem;
margin: 2rem 0;
}
.feature-card {
background: rgba(255,255,255,0.95);
backdrop-filter: blur(10px);
border-radius: 16px;
padding: 1.5rem;
border: 1px solid rgba(255,255,255,0.3);
box-shadow: 0 8px 25px rgba(0,0,0,0.1);
transition: all 0.3s ease;
}
.feature-card:hover {
transform: translateY(-5px);
box-shadow: 0 15px 35px rgba(0,0,0,0.15);
}
.feature-icon {
font-size: 2rem;
margin-bottom: 1rem;
}
.feature-title {
color: #2d3748;
font-size: 1.25rem;
font-weight: 600;
margin-bottom: 0.5rem;
}
.feature-desc {
color: #64748b;
line-height: 1.6;
}
/* Responsive Design */
@media (max-width: 768px) {
.gradio-container {
padding: 0.5rem !important;
}
.header-text h1 {
font-size: 2rem;
flex-direction: column;
gap: 0.5rem;
}
.header-text {
padding: 2rem 1rem;
}
.stats-container {
grid-template-columns: repeat(2, 1fr);
gap: 1rem;
}
.stat-card {
padding: 1.5rem;
}
.feature-grid {
grid-template-columns: 1fr;
gap: 1rem;
}
.mood-indicator {
width: 50px;
height: 50px;
font-size: 20px;
}
.voice-btn {
width: 50px !important;
height: 50px !important;
font-size: 20px !important;
}
}
/* Loading Animation */
@keyframes shimmer {
0% { background-position: -468px 0; }
100% { background-position: 468px 0; }
}
.loading {
animation: shimmer 1.5s ease-in-out infinite;
background: linear-gradient(90deg, #f0f0f0 25%, #e0e0e0 50%, #f0f0f0 75%);
background-size: 400% 100%;
}
/* Sentiment-based message styling */
.message-positive {
border-left: 4px solid #84fab0 !important;
background: linear-gradient(135deg, rgba(132, 250, 176, 0.1) 0%, rgba(143, 211, 244, 0.1) 100%) !important;
}
.message-negative {
border-left: 4px solid #ff9a9e !important;
background: linear-gradient(135deg, rgba(255, 154, 158, 0.1) 0%, rgba(254, 207, 239, 0.1) 100%) !important;
}
.message-anxious {
border-left: 4px solid #ffecd2 !important;
background: linear-gradient(135deg, rgba(255, 236, 210, 0.1) 0%, rgba(252, 182, 159, 0.1) 100%) !important;
}
""" |