Austing Dong
.
b019cc7
import os
import torch
import base64
import json
import numpy as np
from PIL import Image
from openai import OpenAI
from demo.model_utils import *
from pydantic import BaseModel
questions = json.load(open("evaluate/new_test.json", "r"))
judge_client = OpenAI(api_key=os.environ["GEMINI_HCI_API_KEY"],
base_url="https://generativelanguage.googleapis.com/v1beta/openai/")
class Judge_Result(BaseModel):
result: int
def set_seed(model_seed = 70):
torch.manual_seed(model_seed)
torch.cuda.manual_seed(model_seed) if torch.cuda.is_available() else None
def clean():
# Empty CUDA cache
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect() # Frees inter-process CUDA memory
# Empty MacOS Metal backend (if using Apple Silicon)
if torch.backends.mps.is_available():
torch.mps.empty_cache()
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
def llm_judge(answer, options, correct_answer):
completion = judge_client.beta.chat.completions.parse(
model="gemini-2.5-pro-preview-03-25",
messages=[
{ "role": "system", "content": "You are a judge that evaluates the correctness of answers to questions. The answer might not be the letter of correct option. You need to judge correctness of the answer, comparing to the options and correct option. Return the correctness in 1: Correct or 0: Incorrect." },
{ "role": "user", "content": f":Options: {options}\nAnswer:{answer},Correct Option: {correct_answer}" },
],
response_format=Judge_Result
)
answer = completion.choices[0].message.content
print(f"Judge Answer: {answer}")
return json.loads(answer)["result"]
def evaluate(model_type, num_eval = 10):
sum_correct = np.zeros(len(questions))
RESULTS_ROOT = "./evaluate/results"
for eval_idx in range(num_eval):
clean()
set_seed(np.random.randint(0, 1000))
model_utils, vl_gpt, tokenizer = None, None, None
if model_type.split('-')[0] == "Janus":
model_utils = Janus_Utils()
vl_gpt, tokenizer = model_utils.init_Janus(model_type.split('-')[-1])
elif model_type.split('-')[0] == "LLaVA":
model_utils = LLaVA_Utils()
version = model_type.split('-')[1]
vl_gpt, tokenizer = model_utils.init_LLaVA(version=version)
elif model_type.split('-')[0] == "ChartGemma":
model_utils = ChartGemma_Utils()
vl_gpt, tokenizer = model_utils.init_ChartGemma()
elif model_type.split('-')[0] == "GPT":
client = OpenAI(api_key=os.environ["OPENAI_HCI_API_KEY"])
elif model_type.split('-')[0] == "Gemini":
client = OpenAI(api_key=os.environ["GEMINI_HCI_API_KEY"],
base_url="https://generativelanguage.googleapis.com/v1beta/openai/")
for question_idx, question in enumerate(questions):
chart_type = question["type"]
q = question["question"]
img_path = question["img_path"]
options = question.get("options", None)
correct_answer = question.get("correct_answer", None)
image = np.array(Image.open(img_path).convert("RGB"))
input_text = f"Options: {options}\nQuestion: {q}\n"
if model_type.split('-')[0] == "GPT":
base64_image = encode_image(img_path)
completion = client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "user",
"content": [
{ "type": "text", "text": f"{input_text}" },
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}",
},
},
],
}
],
)
answer = completion.choices[0].message.content
elif model_type.split('-')[0] == "Gemini":
base64_image = encode_image(img_path)
completion = client.chat.completions.create(
model="gemini-2.0-flash",
messages=[
{
"role": "user",
"content": [
{ "type": "text", "text": f"{input_text}" },
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}",
},
},
],
}
],
)
answer = completion.choices[0].message.content
else:
prepare_inputs = model_utils.prepare_inputs(input_text, image)
temperature = 0.1
top_p = 0.95
if model_type.split('-')[0] == "Janus":
inputs_embeds = model_utils.generate_inputs_embeddings(prepare_inputs)
outputs = model_utils.generate_outputs(inputs_embeds, prepare_inputs, temperature, top_p)
else:
outputs = model_utils.generate_outputs(prepare_inputs, temperature, top_p)
sequences = outputs.sequences.cpu().tolist()
answer = tokenizer.decode(sequences[0], skip_special_tokens=True)
# Judge the answer
result_judge = llm_judge(answer, options, correct_answer)
sum_correct[question_idx] += 1 if result_judge else 0
print(f"Model: {model_type}, Question: {question_idx + 1}, Answer: {answer}, Correct: {result_judge}")
# Save the results
FILES_ROOT = f"{RESULTS_ROOT}/{model_type}/{eval_idx}"
os.makedirs(FILES_ROOT, exist_ok=True)
with open(f"{FILES_ROOT}/Q{question_idx + 1}-{chart_type}.txt", "w") as f:
f.write(answer)
f.close()
accuracy = sum_correct / num_eval
print(f"Model: {model_type}, Accuracy: {accuracy}")
with open(f"{RESULTS_ROOT}/{model_type}/accuracy.txt", "w") as f:
for question_idx, question in enumerate(questions):
chart_type = question["type"]
f.write(f"Chart Type: {chart_type}, Accuracy: {accuracy[question_idx]}\n")
f.close()
if __name__ == '__main__':
# models = ["Janus-Pro-1B", "ChartGemma", "GPT-4o", "Gemini-2.0-flash", "Janus-Pro-7B", "LLaVA-1.5-7B"]
models = ["LLaVA-1.5-7B", "Gemini-2.0-flash", "Janus-Pro-7B", ]
for model_type in models:
evaluate(model_type=model_type, num_eval=10)