File size: 10,172 Bytes
1b73364 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
import datetime
import warnings
import os
import tempfile
from cachetools import cached, TTLCache
warnings.filterwarnings("ignore", category=FutureWarning, module="seaborn")
# ------------------------------------------------------------------
# 1) Load CSV data once
# ------------------------------------------------------------------
csv_data = None
def load_csv_data():
global csv_data
# Optional: specify column dtypes if known; adjust as necessary
dtype_dict = {
"order_id": "Int64",
"customer_id": "Int64",
"product_id": "Int64",
"quantity": "Int64",
"price": "float",
"total": "float",
"customer_name": "string",
"product_names": "string",
"categories": "string"
}
csv_data = pd.read_csv(
"sales_data.csv",
parse_dates=["order_date"],
dayfirst=True, # if your dates are DD/MM/YYYY format
low_memory=False,
dtype=dtype_dict
)
load_csv_data()
cache = TTLCache(maxsize=128, ttl=300)
@cached(cache)
def get_unique_categories():
global csv_data
if csv_data is None:
return []
cats = sorted(csv_data['categories'].dropna().unique().tolist())
cats = [cat.capitalize() for cat in cats]
return cats
def get_date_range():
global csv_data
if csv_data is None or csv_data.empty:
return None, None
return csv_data['order_date'].min(), csv_data['order_date'].max()
def filter_data(start_date, end_date, category):
global csv_data
if isinstance(start_date, str):
start_date = datetime.datetime.strptime(start_date, '%Y-%m-%d').date()
if isinstance(end_date, str):
end_date = datetime.datetime.strptime(end_date, '%Y-%m-%d').date()
df = csv_data.loc[
(csv_data['order_date'] >= pd.to_datetime(start_date)) &
(csv_data['order_date'] <= pd.to_datetime(end_date))
].copy()
if category != "All Categories":
df = df.loc[df['categories'].str.capitalize() == category].copy()
return df
def get_dashboard_stats(start_date, end_date, category):
df = filter_data(start_date, end_date, category)
if df.empty:
return (0, 0, 0, "N/A")
df['revenue'] = df['price'] * df['quantity']
total_revenue = df['revenue'].sum()
total_orders = df['order_id'].nunique()
avg_order_value = total_revenue / total_orders if total_orders else 0
cat_revenues = df.groupby('categories')['revenue'].sum().sort_values(ascending=False)
top_category = cat_revenues.index[0] if not cat_revenues.empty else "N/A"
return (total_revenue, total_orders, avg_order_value, top_category.capitalize())
def get_data_for_table(start_date, end_date, category):
df = filter_data(start_date, end_date, category)
if df.empty:
return pd.DataFrame()
df = df.sort_values(by=["order_id", "order_date"], ascending=[True, False]).copy()
columns_order = [
"order_id", "order_date", "customer_id", "customer_name",
"product_id", "product_names", "categories", "quantity",
"price", "total"
]
columns_order = [col for col in columns_order if col in df.columns]
df = df[columns_order].copy()
df['revenue'] = df['price'] * df['quantity']
return df
def get_plot_data(start_date, end_date, category):
df = filter_data(start_date, end_date, category)
if df.empty:
return pd.DataFrame()
df['revenue'] = df['price'] * df['quantity']
plot_data = df.groupby(df['order_date'].dt.date)['revenue'].sum().reset_index()
plot_data.rename(columns={'order_date': 'date'}, inplace=True)
return plot_data
def get_revenue_by_category(start_date, end_date, category):
df = filter_data(start_date, end_date, category)
if df.empty:
return pd.DataFrame()
df['revenue'] = df['price'] * df['quantity']
cat_data = df.groupby('categories')['revenue'].sum().reset_index()
cat_data = cat_data.sort_values(by='revenue', ascending=False)
return cat_data
def get_top_products(start_date, end_date, category):
df = filter_data(start_date, end_date, category)
if df.empty:
return pd.DataFrame()
df['revenue'] = df['price'] * df['quantity']
prod_data = df.groupby('product_names')['revenue'].sum().reset_index()
prod_data = prod_data.sort_values(by='revenue', ascending=False).head(10)
return prod_data
def create_matplotlib_figure(data, x_col, y_col, title, xlabel, ylabel, orientation='v'):
plt.figure(figsize=(10, 6))
if data.empty:
plt.text(0.5, 0.5, 'No data available', ha='center', va='center')
else:
if orientation == 'v':
plt.bar(data[x_col], data[y_col])
plt.xticks(rotation=45, ha='right')
else:
plt.barh(data[x_col], data[y_col])
plt.gca().invert_yaxis()
plt.title(title)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.tight_layout()
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmpfile:
plt.savefig(tmpfile.name)
plt.close()
return tmpfile.name
def update_dashboard(start_date, end_date, category):
total_revenue, total_orders, avg_order_value, top_category = get_dashboard_stats(start_date, end_date, category)
# Generate plots
revenue_data = get_plot_data(start_date, end_date, category)
category_data = get_revenue_by_category(start_date, end_date, category)
top_products_data = get_top_products(start_date, end_date, category)
revenue_over_time_path = create_matplotlib_figure(
revenue_data, 'date', 'revenue',
"Revenue Over Time", "Date", "Revenue"
)
revenue_by_category_path = create_matplotlib_figure(
category_data, 'categories', 'revenue',
"Revenue by Category", "Category", "Revenue"
)
top_products_path = create_matplotlib_figure(
top_products_data, 'product_names', 'revenue',
"Top Products", "Revenue", "Product Name", orientation='h'
)
# Data table
table_data = get_data_for_table(start_date, end_date, category)
return (
revenue_over_time_path,
revenue_by_category_path,
top_products_path,
table_data,
total_revenue,
total_orders,
avg_order_value,
top_category
)
def create_dashboard():
min_date, max_date = get_date_range()
if min_date is None or max_date is None:
min_date = datetime.datetime.now()
max_date = datetime.datetime.now()
default_start_date = min_date
default_end_date = max_date
with gr.Blocks(css="""
footer {display: none !important;}
.tabs {border: none !important;}
.gr-plot {border: none !important; box-shadow: none !important;}
""") as dashboard:
gr.Markdown("# Sales Performance Dashboard")
# Filters row
with gr.Row():
start_date = gr.DateTime(
label="Start Date",
value=default_start_date.strftime('%Y-%m-%d'),
include_time=False,
type="datetime"
)
end_date = gr.DateTime(
label="End Date",
value=default_end_date.strftime('%Y-%m-%d'),
include_time=False,
type="datetime"
)
category_filter = gr.Dropdown(
choices=["All Categories"] + get_unique_categories(),
label="Category",
value="All Categories"
)
gr.Markdown("# Key Metrics")
# Stats row
with gr.Row():
total_revenue = gr.Number(label="Total Revenue", value=0)
total_orders = gr.Number(label="Total Orders", value=0)
avg_order_value = gr.Number(label="Average Order Value", value=0)
top_category = gr.Textbox(label="Top Category", value="N/A")
gr.Markdown("# Visualisations")
# Tabs for Plots
with gr.Tabs():
with gr.Tab("Revenue Over Time"):
revenue_over_time_image = gr.Image(label="Revenue Over Time", container=False)
with gr.Tab("Revenue by Category"):
revenue_by_category_image = gr.Image(label="Revenue by Category", container=False)
with gr.Tab("Top Products"):
top_products_image = gr.Image(label="Top Products", container=False)
gr.Markdown("# Raw Data")
# Data Table (below the plots)
data_table = gr.DataFrame(
label="Sales Data",
type="pandas",
interactive=False
)
# When filters change, update everything
for f in [start_date, end_date, category_filter]:
f.change(
fn=lambda s, e, c: update_dashboard(s, e, c),
inputs=[start_date, end_date, category_filter],
outputs=[
revenue_over_time_image,
revenue_by_category_image,
top_products_image,
data_table,
total_revenue,
total_orders,
avg_order_value,
top_category
]
)
# Initial load
dashboard.load(
fn=lambda: update_dashboard(default_start_date, default_end_date, "All Categories"),
outputs=[
revenue_over_time_image,
revenue_by_category_image,
top_products_image,
data_table,
total_revenue,
total_orders,
avg_order_value,
top_category
]
)
return dashboard
if __name__ == "__main__":
dashboard = create_dashboard()
dashboard.launch(share=True) |