File size: 10,172 Bytes
1b73364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
import datetime
import warnings
import os
import tempfile
from cachetools import cached, TTLCache

warnings.filterwarnings("ignore", category=FutureWarning, module="seaborn")

# ------------------------------------------------------------------
# 1) Load CSV data once
# ------------------------------------------------------------------
csv_data = None

def load_csv_data():
    global csv_data
    
    # Optional: specify column dtypes if known; adjust as necessary
    dtype_dict = {
        "order_id": "Int64",
        "customer_id": "Int64",
        "product_id": "Int64",
        "quantity": "Int64",
        "price": "float",
        "total": "float",
        "customer_name": "string",
        "product_names": "string",
        "categories": "string"
    }
    
    csv_data = pd.read_csv(
        "sales_data.csv",
        parse_dates=["order_date"],
        dayfirst=True,      # if your dates are DD/MM/YYYY format
        low_memory=False,
        dtype=dtype_dict
    )

load_csv_data()



cache = TTLCache(maxsize=128, ttl=300)

@cached(cache)
def get_unique_categories():
    global csv_data
    if csv_data is None:
        return []
    cats = sorted(csv_data['categories'].dropna().unique().tolist())
    cats = [cat.capitalize() for cat in cats]
    return cats

def get_date_range():
    global csv_data
    if csv_data is None or csv_data.empty:
        return None, None
    return csv_data['order_date'].min(), csv_data['order_date'].max()

def filter_data(start_date, end_date, category):
    global csv_data

    if isinstance(start_date, str):
        start_date = datetime.datetime.strptime(start_date, '%Y-%m-%d').date()
    if isinstance(end_date, str):
        end_date = datetime.datetime.strptime(end_date, '%Y-%m-%d').date()

    df = csv_data.loc[
        (csv_data['order_date'] >= pd.to_datetime(start_date)) &
        (csv_data['order_date'] <= pd.to_datetime(end_date))
    ].copy()

    if category != "All Categories":
        df = df.loc[df['categories'].str.capitalize() == category].copy()

    return df

def get_dashboard_stats(start_date, end_date, category):
    df = filter_data(start_date, end_date, category)
    if df.empty:
        return (0, 0, 0, "N/A")

    df['revenue'] = df['price'] * df['quantity']
    total_revenue = df['revenue'].sum()
    total_orders = df['order_id'].nunique()
    avg_order_value = total_revenue / total_orders if total_orders else 0

    cat_revenues = df.groupby('categories')['revenue'].sum().sort_values(ascending=False)
    top_category = cat_revenues.index[0] if not cat_revenues.empty else "N/A"

    return (total_revenue, total_orders, avg_order_value, top_category.capitalize())

def get_data_for_table(start_date, end_date, category):
    df = filter_data(start_date, end_date, category)
    if df.empty:
        return pd.DataFrame()

    df = df.sort_values(by=["order_id", "order_date"], ascending=[True, False]).copy()

    columns_order = [
        "order_id", "order_date", "customer_id", "customer_name",
        "product_id", "product_names", "categories", "quantity",
        "price", "total"
    ]
    columns_order = [col for col in columns_order if col in df.columns]
    df = df[columns_order].copy()

    df['revenue'] = df['price'] * df['quantity']
    return df

def get_plot_data(start_date, end_date, category):
    df = filter_data(start_date, end_date, category)
    if df.empty:
        return pd.DataFrame()
    df['revenue'] = df['price'] * df['quantity']
    plot_data = df.groupby(df['order_date'].dt.date)['revenue'].sum().reset_index()
    plot_data.rename(columns={'order_date': 'date'}, inplace=True)
    return plot_data

def get_revenue_by_category(start_date, end_date, category):
    df = filter_data(start_date, end_date, category)
    if df.empty:
        return pd.DataFrame()
    df['revenue'] = df['price'] * df['quantity']
    cat_data = df.groupby('categories')['revenue'].sum().reset_index()
    cat_data = cat_data.sort_values(by='revenue', ascending=False)
    return cat_data

def get_top_products(start_date, end_date, category):
    df = filter_data(start_date, end_date, category)
    if df.empty:
        return pd.DataFrame()
    df['revenue'] = df['price'] * df['quantity']
    prod_data = df.groupby('product_names')['revenue'].sum().reset_index()
    prod_data = prod_data.sort_values(by='revenue', ascending=False).head(10)
    return prod_data

def create_matplotlib_figure(data, x_col, y_col, title, xlabel, ylabel, orientation='v'):
    plt.figure(figsize=(10, 6))
    if data.empty:
        plt.text(0.5, 0.5, 'No data available', ha='center', va='center')
    else:
        if orientation == 'v':
            plt.bar(data[x_col], data[y_col])
            plt.xticks(rotation=45, ha='right')
        else:
            plt.barh(data[x_col], data[y_col])
            plt.gca().invert_yaxis() 

    plt.title(title)
    plt.xlabel(xlabel)
    plt.ylabel(ylabel)
    plt.tight_layout()

    with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmpfile:
        plt.savefig(tmpfile.name)
    plt.close()
    return tmpfile.name



def update_dashboard(start_date, end_date, category):
    total_revenue, total_orders, avg_order_value, top_category = get_dashboard_stats(start_date, end_date, category)

    # Generate plots
    revenue_data = get_plot_data(start_date, end_date, category)
    category_data = get_revenue_by_category(start_date, end_date, category)
    top_products_data = get_top_products(start_date, end_date, category)

    revenue_over_time_path = create_matplotlib_figure(
        revenue_data, 'date', 'revenue',
        "Revenue Over Time", "Date", "Revenue"
    )
    revenue_by_category_path = create_matplotlib_figure(
        category_data, 'categories', 'revenue',
        "Revenue by Category", "Category", "Revenue"
    )
    top_products_path = create_matplotlib_figure(
        top_products_data, 'product_names', 'revenue',
        "Top Products", "Revenue", "Product Name", orientation='h'
    )

    # Data table
    table_data = get_data_for_table(start_date, end_date, category)

    return (
        revenue_over_time_path,
        revenue_by_category_path,
        top_products_path,
        table_data,
        total_revenue,
        total_orders,
        avg_order_value,
        top_category
    )

def create_dashboard():
    min_date, max_date = get_date_range()
    if min_date is None or max_date is None:
        min_date = datetime.datetime.now()
        max_date = datetime.datetime.now()

    default_start_date = min_date
    default_end_date = max_date

    with gr.Blocks(css="""

        footer {display: none !important;}

        .tabs {border: none !important;}  

        .gr-plot {border: none !important; box-shadow: none !important;}

    """) as dashboard:
        
        gr.Markdown("# Sales Performance Dashboard")

        # Filters row
        with gr.Row():
            start_date = gr.DateTime(
                label="Start Date",
                value=default_start_date.strftime('%Y-%m-%d'),
                include_time=False,
                type="datetime"
            )
            end_date = gr.DateTime(
                label="End Date",
                value=default_end_date.strftime('%Y-%m-%d'),
                include_time=False,
                type="datetime"
            )
            category_filter = gr.Dropdown(
                choices=["All Categories"] + get_unique_categories(),
                label="Category",
                value="All Categories"
            )

        gr.Markdown("# Key Metrics")

        # Stats row
        with gr.Row():
            total_revenue = gr.Number(label="Total Revenue", value=0)
            total_orders = gr.Number(label="Total Orders", value=0)
            avg_order_value = gr.Number(label="Average Order Value", value=0)
            top_category = gr.Textbox(label="Top Category", value="N/A")

        gr.Markdown("# Visualisations")
        # Tabs for Plots
        with gr.Tabs():
            with gr.Tab("Revenue Over Time"):
                revenue_over_time_image = gr.Image(label="Revenue Over Time", container=False)
            with gr.Tab("Revenue by Category"):
                revenue_by_category_image = gr.Image(label="Revenue by Category", container=False)
            with gr.Tab("Top Products"):
                top_products_image = gr.Image(label="Top Products", container=False)

        gr.Markdown("# Raw Data")
        # Data Table (below the plots)
        data_table = gr.DataFrame(
            label="Sales Data",
            type="pandas",
            interactive=False
        )

        # When filters change, update everything
        for f in [start_date, end_date, category_filter]:
            f.change(
                fn=lambda s, e, c: update_dashboard(s, e, c),
                inputs=[start_date, end_date, category_filter],
                outputs=[
                    revenue_over_time_image, 
                    revenue_by_category_image, 
                    top_products_image,
                    data_table,
                    total_revenue, 
                    total_orders,
                    avg_order_value, 
                    top_category
                ]
            )

        # Initial load
        dashboard.load(
            fn=lambda: update_dashboard(default_start_date, default_end_date, "All Categories"),
            outputs=[
                revenue_over_time_image, 
                revenue_by_category_image, 
                top_products_image,
                data_table,
                total_revenue, 
                total_orders,
                avg_order_value, 
                top_category
            ]
        )

    return dashboard

if __name__ == "__main__":
    dashboard = create_dashboard()
    dashboard.launch(share=True)