v1shal-k-l commited on
Commit
f089529
·
unverified ·
1 Parent(s): e6b8736

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -0
README.md CHANGED
@@ -12,3 +12,65 @@ short_description: ' Fetch the articles of the given company name '
12
 
13
  # News_Summarisation_Sentiment_Analysis
14
  This is a web-based application that extracts key details from multiple news articles related to a given company, performs sentiment analysis, conducts a comparative analysis, and generates a text-to-speech (TTS) output in Hindi.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
  # News_Summarisation_Sentiment_Analysis
14
  This is a web-based application that extracts key details from multiple news articles related to a given company, performs sentiment analysis, conducts a comparative analysis, and generates a text-to-speech (TTS) output in Hindi.
15
+
16
+
17
+ ## Features
18
+ - Company-specific news extraction
19
+ - Advanced text summarization using Pegasus model
20
+ - Sentiment analysis with FinBERT
21
+ - Topic extraction using LDA
22
+ - Comparative sentiment analysis
23
+ - Text-to-speech conversion in Hindi
24
+ - User-friendly Streamlit interface
25
+
26
+ ## Project Structure
27
+
28
+
29
+ ## Installation
30
+ 1. Create a virtual environment:
31
+ ```bash
32
+ python -m venv myenv
33
+ # Windows
34
+ myenv\Scripts\activate
35
+ ```
36
+ 2. Install dependencies:
37
+ ``` bash
38
+ pip install -r requirements.txt
39
+ ```
40
+
41
+ 3. Run the application
42
+ ```
43
+ streamlit run app.py
44
+ ```
45
+
46
+ 4. Usage
47
+ ```
48
+ ##Enter a company name and click "Analyze" to get:
49
+ -->News articles
50
+ -->Summaries
51
+ -->Sentiment analysis
52
+ -->Topic distribution
53
+ -->Comparative analysis
54
+ -->Audio output in Hindi
55
+ ##Technical Details
56
+ -->Frontend: Streamlit
57
+ -->NLP Models:
58
+ -->Pegasus for summarization
59
+ -->FinBERT for sentiment analysis
60
+ -->LDA for topic modeling
61
+ -->Audio Processing: GTTS for text-to-speech
62
+ -->Backend: FastAPI
63
+ ##Requirements
64
+ -->Python 3.8+
65
+ -->CUDA (optional for GPU acceleration)
66
+ -->Internet connection for model downloads
67
+
68
+ ##License
69
+ -->MIT License
70
+
71
+ ##Acknowledgments
72
+ -->Hugging Face for NLP models
73
+ -->Streamlit for web interface
74
+ -->NLTK for text processing
75
+
76
+ ```