File size: 8,068 Bytes
d15a538
 
 
 
 
 
 
 
 
 
bf50961
d15a538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf50961
d15a538
bf50961
 
d15a538
 
 
 
bf50961
d15a538
 
bf50961
d15a538
bf50961
 
 
 
d15a538
 
bf50961
d15a538
 
 
bf50961
d15a538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf50961
d15a538
bf50961
d15a538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf50961
 
 
 
d15a538
bf50961
d15a538
 
 
 
 
bf50961
d15a538
bf50961
d15a538
 
 
4735f9f
d15a538
 
bf50961
 
 
 
 
 
 
 
d15a538
f892a57
f6081d0
 
bf50961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import torch
from PIL import Image, ImageDraw, ImageFont
from transformers import GroundingDinoProcessor
from modeling_grounding_dino import GroundingDinoForObjectDetection

from PIL import Image, ImageDraw, ImageFont
from itertools import cycle
import os
from datetime import datetime
import gradio as gr
import tempfile

# Load model and processor
model_id = "fushh7/llmdet_swin_large_hf"
model_id = "fushh7/llmdet_swin_tiny_hf"
DEVICE = "cpu"

print(f"[INFO] Using device: {DEVICE}")
print(f"[INFO] Loading model from {model_id}...")

processor = GroundingDinoProcessor.from_pretrained(model_id)
model = GroundingDinoForObjectDetection.from_pretrained(model_id).to(DEVICE)
model.eval()

print("[INFO] Model loaded successfully.")

# Pre-defined palette (extend or tweak as you like)
BOX_COLORS = [
    "deepskyblue", "red", "lime", "dodgerblue",
    "cyan", "magenta", "yellow",
    "orange", "chartreuse"
]

def save_cropped_images(original_image, boxes, labels, scores):
    """
    Salva ogni regione ritagliata definita dalle bounding box in file temporanei.
    
    :param original_image: Immagine PIL originale
    :param boxes: Lista di bounding box [x_min, y_min, x_max, y_max]
    :param labels: Lista di etichette per ogni box
    :param scores: Lista di punteggi di confidenza
    :return: Lista dei percorsi dei file temporanei salvati
    """
    saved_paths = []
    
    for i, (box, label, score) in enumerate(zip(boxes, labels, scores)):
        # Crea un file temporaneo
        with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmp_file:
            filepath = tmp_file.name
        
        # Ritaglia la regione dall'immagine originale
        cropped_img = original_image.crop(box)
        
        # Salva l'immagine ritagliata
        cropped_img.save(filepath)
        saved_paths.append(filepath)
    
    return saved_paths

def draw_boxes(image, boxes, labels, scores, colors=BOX_COLORS, font_path="arial.ttf", font_size=16):
    """
    Draw bounding boxes and labels on a PIL Image.

    :param image: PIL Image object
    :param boxes: Iterable of [x_min, y_min, x_max, y_max]
    :param labels: Iterable of label strings
    :param scores: Iterable of scalar confidences (0-1)
    :param colors: List/tuple of colour names or RGB tuples
    :param font_path: Path to a TTF font for labels
    :param font_size: Int size of font to use, default 16
    :return: PIL Image with drawn boxes
    """
    # Ensure we can iterate colours indefinitely
    colour_cycle = cycle(colors)
    draw = ImageDraw.Draw(image)

    # Pick a font (fallback to default if missing)
    try:
        font = ImageFont.truetype(font_path, size=font_size)
    except IOError:
        font = ImageFont.load_default(size=font_size)

    # Assign a consistent colour per label (optional)
    label_to_colour = {}

    for box, label, score in zip(boxes, labels, scores):
        # Reuse colour if label seen before, else take next from cycle
        colour = label_to_colour.setdefault(label, next(colour_cycle))

        x_min, y_min, x_max, y_max = map(int, box)

        # Draw rectangle
        draw.rectangle([x_min, y_min, x_max, y_max], outline=colour, width=2)

        # Compose text
        text = f"{label} ({score:.3f})"
        text_size = draw.textbbox((0, 0), text, font=font)[2:]

        # Draw text background for legibility
        bg_coords = [x_min, y_min - text_size[1] - 4,
                     x_min + text_size[0] + 4, y_min]
        draw.rectangle(bg_coords, fill=colour)

        # Draw text
        draw.text((x_min + 2, y_min - text_size[1] - 2),
                  text, fill="black", font=font)

    return image

def resize_image_max_dimension(image, max_size=4096):
    """
    Resize an image so that the longest side is at most max_size pixels,
    while maintaining the aspect ratio.

    :param image: PIL Image object
    :param max_size: Maximum dimension in pixels (default: 1024)
    :return: PIL Image object (resized)
    """
    width, height = image.size

    # Check if resizing is needed
    if max(width, height) <= max_size:
        return image

    # Calculate new dimensions maintaining aspect ratio
    ratio = max_size / max(width, height)
    new_width = int(width * ratio)
    new_height = int(height * ratio)

    # Resize the image using high-quality resampling
    return image.resize((new_width, new_height), Image.Resampling.LANCZOS)

def detect_and_draw(
    img: Image.Image,
    text_query: str,
    box_threshold: float = 0.14,
    text_threshold: float = 0.13,
    save_crops: bool = True
):
    """
    Detect objects described in `text_query`, draw boxes, return the image and crops.
    Note: `text_query` must be lowercase and each concept ends with a dot
          (e.g. 'a cat. a remote control.')
    """

    # Make sure text is lowered
    text_query = text_query.lower()

    # If the image size is too large, we make it smaller
    img = resize_image_max_dimension(img, max_size=4096)

    # Preprocess the image
    inputs = processor(images=img, text=text_query, return_tensors="pt").to(DEVICE)

    with torch.no_grad():
        outputs = model(**inputs)

    results = processor.post_process_grounded_object_detection(
        outputs,
        inputs.input_ids,
        box_threshold=box_threshold,
        text_threshold=text_threshold,
        target_sizes=[img.size[::-1]]
    )[0]

    img_out = img.copy()
    img_out = draw_boxes(
        img_out,
        boxes  = results["boxes"].cpu().numpy(),
        labels = results.get("text_labels", results.get("labels", [])),
        scores = results["scores"]
    )
    
    # Lista per i percorsi dei crop
    crop_paths = []
    
    if save_crops:
        crop_paths = save_cropped_images(
            img,
            boxes=results["boxes"].cpu().numpy(),
            labels=results.get("text_labels", results.get("labels", [])),
            scores=results["scores"]
        )
        print(f"Generated {len(crop_paths)} cropped images")

    return img_out, crop_paths

# Create example list
examples = [
    ["examples/stickers(1).jpg", "stickers. labels.", 0.24, 0.23],
]

# Funzione per pulire i file temporanei dopo l'uso
def cleanup_temp_files(crop_paths):
    for path in crop_paths:
        try:
            os.unlink(path)
        except:
            pass

# Create Gradio demo
with gr.Blocks(title="Stikkiers", css=".gradio-container {max-width: 100% !important}") as demo:
    gr.Markdown("# Sticker Finder")
    gr.Markdown("Upload an image  and adjust thresholds to see detections.")
    
    with gr.Row():
        with gr.Column():
            image_input = gr.Image(type="pil", label="Input Image")
            text_query = gr.Textbox(
                value="stickers. labels. postcards.",
                label="Text Query (lowercase, end each with '.', for example 'a bird. a tree.')"
            )
            box_threshold = gr.Slider(0.0, 1.0, 0.14, step=0.05, label="Box Threshold")
            text_threshold = gr.Slider(0.0, 1.0, 0.13, step=0.05, label="Text Threshold")
            submit_btn = gr.Button("Detect")
        
        with gr.Column():
            image_output = gr.Image(type="pil", label="Detections")
    
    # Galleria per i crop
    gallery = gr.Gallery(
        label="Detected Crops",
        columns=[4],
        rows=[2],
        object_fit="contain",
        height="auto"
    )
    
    # Esempi
    gr.Examples(
        examples=examples,
        inputs=[image_input, text_query, box_threshold, text_threshold],
        outputs=[image_output, gallery],
        fn=detect_and_draw,
        cache_examples=True
    )
    
    # Pulsante di submit
    submit_btn.click(
        fn=detect_and_draw,
        inputs=[image_input, text_query, box_threshold, text_threshold],
        outputs=[image_output, gallery]
    )
    
    # Pulisci i file temporanei quando viene caricato un nuovo esempio
    demo.load(
        fn=lambda: None,
        inputs=None,
        outputs=None,
    )

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", share=False)