Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,96 +1,54 @@
|
|
| 1 |
-
import
|
| 2 |
-
import
|
| 3 |
-
import
|
| 4 |
from PIL import Image
|
| 5 |
-
import cv2
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
)
|
| 30 |
-
checkpoint_path = hf_hub_download(
|
| 31 |
-
repo_id="IDEA-Research/grounding-dino-tiny",
|
| 32 |
-
filename="groundingdino_tiny.pth"
|
| 33 |
-
)
|
| 34 |
-
model = load_model(config_path, checkpoint_path)
|
| 35 |
-
return model
|
| 36 |
-
|
| 37 |
-
sam = load_sam()
|
| 38 |
-
grounding_dino = load_grounding_dino()
|
| 39 |
-
|
| 40 |
-
# Caricamento immagine da parte dell'utente
|
| 41 |
-
uploaded_image = st.file_uploader("📷 Carica un'immagine", type=['jpg', 'jpeg', 'png'])
|
| 42 |
-
|
| 43 |
-
prompt = st.text_input("📝 Inserisci le classi da riconoscere (separate da virgola)",
|
| 44 |
-
value="lamiera, foro circolare, vite, bullone, scanalatura")
|
| 45 |
-
|
| 46 |
-
if uploaded_image is not None:
|
| 47 |
-
image = Image.open(uploaded_image).convert("RGB")
|
| 48 |
-
img_array = np.array(image)
|
| 49 |
-
|
| 50 |
-
st.image(image, caption="Immagine caricata", use_column_width=True)
|
| 51 |
-
|
| 52 |
-
if st.button("▶️ Avvia riconoscimento"):
|
| 53 |
-
# GroundingDINO prediction
|
| 54 |
-
boxes, logits, phrases = predict(
|
| 55 |
-
model=grounding_dino,
|
| 56 |
-
image=img_array,
|
| 57 |
-
caption=prompt,
|
| 58 |
-
box_threshold=0.3,
|
| 59 |
-
text_threshold=0.25,
|
| 60 |
-
device="cuda" if torch.cuda.is_available() else "cpu"
|
| 61 |
-
)
|
| 62 |
-
|
| 63 |
-
annotated_frame = annotate(image_source=img_array, boxes=boxes, logits=logits, phrases=phrases)
|
| 64 |
-
|
| 65 |
-
st.subheader("Risultato GroundingDINO")
|
| 66 |
-
st.image(annotated_frame, caption="Annotazione GroundingDINO")
|
| 67 |
-
|
| 68 |
-
# SAM segmentation
|
| 69 |
-
sam.set_image(img_array)
|
| 70 |
-
H, W, _ = img_array.shape
|
| 71 |
-
boxes_scaled = boxes * torch.tensor([W, H, W, H], device=boxes.device)
|
| 72 |
-
boxes_scaled = boxes_scaled.cpu().numpy()
|
| 73 |
-
|
| 74 |
-
masks, scores, _ = sam.predict_torch(
|
| 75 |
-
point_coords=None,
|
| 76 |
-
point_labels=None,
|
| 77 |
-
boxes=torch.tensor(boxes_scaled, device=sam.device),
|
| 78 |
-
multimask_output=False,
|
| 79 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
plt.figure(figsize=(10, 10))
|
| 84 |
-
plt.imshow(img_array)
|
| 85 |
-
for mask in masks:
|
| 86 |
-
mask_np = mask[0].cpu().numpy()
|
| 87 |
-
plt.contour(mask_np, colors='red', linewidths=1.5)
|
| 88 |
-
plt.axis('off')
|
| 89 |
-
|
| 90 |
-
st.pyplot(plt.gcf())
|
| 91 |
-
plt.close()
|
| 92 |
-
|
| 93 |
-
# Tabella risultati
|
| 94 |
-
st.subheader("🔖 Tabella Risultati")
|
| 95 |
-
result_data = [{"Classe": phrase, "Confidenza": round(logit.item(), 2)} for phrase, logit in zip(phrases, logits)]
|
| 96 |
-
st.table(result_data)
|
|
|
|
| 1 |
+
import gradio as gr, numpy as np
|
| 2 |
+
from utils import SAM, GD
|
| 3 |
+
from groundingdino.util.utils import clean_text
|
| 4 |
from PIL import Image
|
| 5 |
+
import cv2, torch
|
| 6 |
+
|
| 7 |
+
def pipeline(image, prompt):
|
| 8 |
+
# 1. segmenta con SAM
|
| 9 |
+
img_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
| 10 |
+
SAM.set_image(img_cv)
|
| 11 |
+
masks, _, _ = SAM.predict(box=None, point_coords=None, point_labels=None, multimask_output=False)
|
| 12 |
+
|
| 13 |
+
annotated = image.copy()
|
| 14 |
+
boxes, labels, feats = [], [], []
|
| 15 |
+
|
| 16 |
+
for m in masks:
|
| 17 |
+
coords = np.argwhere(m)
|
| 18 |
+
y1, x1 = coords.min(0)
|
| 19 |
+
y2, x2 = coords.max(0)
|
| 20 |
+
box = np.array([x1, y1, x2, y2])
|
| 21 |
+
boxes.append(box)
|
| 22 |
+
|
| 23 |
+
if boxes:
|
| 24 |
+
# 2. grounding DINO zero‑shot
|
| 25 |
+
dino_out = GD.predict_with_caption(
|
| 26 |
+
image=np.array(image),
|
| 27 |
+
captions=[prompt] * len(boxes),
|
| 28 |
+
boxes=np.vstack(boxes)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
)
|
| 30 |
+
for box, text in zip(dino_out["boxes"], dino_out["captions"]):
|
| 31 |
+
x1,y1,x2,y2 = map(int, box)
|
| 32 |
+
cv2.rectangle(annotated, (x1,y1), (x2,y2), (255,0,0), 2)
|
| 33 |
+
cv2.putText(annotated, clean_text(text), (x1, y1-6),
|
| 34 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255,0,0), 2)
|
| 35 |
+
|
| 36 |
+
return Image.fromarray(annotated)
|
| 37 |
+
|
| 38 |
+
demo = gr.Interface(
|
| 39 |
+
fn=pipeline,
|
| 40 |
+
inputs=[
|
| 41 |
+
gr.Image(type="pil"),
|
| 42 |
+
gr.Textbox(value="lamiera, foro circolare, vite, bullone, scanalatura")
|
| 43 |
+
],
|
| 44 |
+
outputs=gr.Image(type="pil"),
|
| 45 |
+
title="Zero‑Shot Mechanical Part Finder",
|
| 46 |
+
description=(
|
| 47 |
+
"Carica una foto di componenti meccanici a fine vita e scrivi le etichette "
|
| 48 |
+
"che vuoi cercare (separate da virgole). Il sistema segmenta con SAM e fa "
|
| 49 |
+
"grounding zero‑shot con GroundingDINO."
|
| 50 |
+
)
|
| 51 |
+
)
|
| 52 |
|
| 53 |
+
if __name__ == "__main__":
|
| 54 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|