valencar commited on
Commit
d24bd47
·
1 Parent(s): 3dcad86
Files changed (2) hide show
  1. app.py +30 -16
  2. requirements.txt +1 -0
app.py CHANGED
@@ -14,37 +14,51 @@ question = "Qual é o maior planeta do sistema solar?"
14
  before = datetime.datetime.now()
15
 
16
  # Load model directly
17
- from transformers import AutoTokenizer, AutoModelForCausalLM
18
 
19
  # tokenizer = AutoTokenizer.from_pretrained("01-ai/Yi-1.5-6B-Chat")
20
  # model = AutoModelForCausalLM.from_pretrained("01-ai/Yi-1.5-6B-Chat")
21
 
22
- from transformers import AutoTokenizer, AutoModelForQuestionAnswering
 
23
 
24
- tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
25
- model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")
26
 
27
  st.write('tokenizando...')
28
- prompt = "Qual é o maior planeta do sistema solar ?"
29
- inputs = tokenizer(prompt, return_tensors="pt")
30
-
31
- # Generate
32
 
33
  st.write('gerando a saida...')
34
- generate_ids = model.generate(inputs.input_ids, max_length=30)
35
- output = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
36
 
 
37
 
38
- st.write('saída gerada')
39
 
40
  st.write(output)
41
 
42
- # Use a pipeline as a high-level helper
43
- # from transformers import pipeline
44
 
45
- # messages = [
46
- # {"role": "user", "content": question},
47
- # ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
  # print('gerando a saida...')
50
 
 
14
  before = datetime.datetime.now()
15
 
16
  # Load model directly
17
+ # from transformers import AutoTokenizer, AutoModelForCausalLM
18
 
19
  # tokenizer = AutoTokenizer.from_pretrained("01-ai/Yi-1.5-6B-Chat")
20
  # model = AutoModelForCausalLM.from_pretrained("01-ai/Yi-1.5-6B-Chat")
21
 
22
+ from transformers import AutoTokenizer, TFRobertaModel
23
+ import tensorflow as tf
24
 
25
+ tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base")
26
+ model = TFRobertaModel.from_pretrained("FacebookAI/roberta-base")
27
 
28
  st.write('tokenizando...')
29
+ inputs = tokenizer(question, return_tensors="tf")
 
 
 
30
 
31
  st.write('gerando a saida...')
32
+ outputs = model(inputs)
 
33
 
34
+ last_hidden_states = outputs.last_hidden_state
35
 
36
+ output = last_hidden_states
37
 
38
  st.write(output)
39
 
 
 
40
 
41
+ # st.write('tokenizando...')
42
+ # prompt = "Qual é o maior planeta do sistema solar ?"
43
+ # # inputs = tokenizer(prompt, return_tensors="pt")
44
+
45
+ # # Generate
46
+
47
+ # st.write('gerando a saida...')
48
+ # # generate_ids = model.generate(inputs.input_ids, max_length=30)
49
+ # # output = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
50
+
51
+
52
+ # st.write('saída gerada')
53
+
54
+ # st.write(output)
55
+
56
+ # # Use a pipeline as a high-level helper
57
+ # # from transformers import pipeline
58
+
59
+ # # messages = [
60
+ # # {"role": "user", "content": question},
61
+ # # ]
62
 
63
  # print('gerando a saida...')
64
 
requirements.txt CHANGED
@@ -3,4 +3,5 @@ transformers==4.44.0
3
  torch
4
  optimum
5
  auto_gptq==0.5.0
 
6
 
 
3
  torch
4
  optimum
5
  auto_gptq==0.5.0
6
+ tensorflow
7