File size: 14,800 Bytes
e2483e1 9aba56f e2483e1 2e74f75 0487dc0 16e2cb0 98c5ea8 16e2cb0 98c5ea8 1bda8f5 ba0ca62 1bda8f5 1c838e1 4f7c20c 2cf93ef e2483e1 9aba56f e2483e1 99c38a1 e2483e1 54916c4 e2483e1 9aba56f 16e2cb0 2acfed7 e2483e1 99c38a1 e2483e1 ba0ca62 9aba56f e2483e1 2acfed7 9aba56f e2483e1 ba0ca62 e2483e1 99c38a1 d488c2b e2483e1 0487dc0 16e2cb0 0487dc0 e2483e1 2acfed7 e2483e1 b4a0040 e2483e1 b4a0040 e2483e1 8ba86e5 e2483e1 b4a0040 4f7c20c b4a0040 e2483e1 4f7c20c e2483e1 0487dc0 e2483e1 b4a0040 4f7c20c b4a0040 8ba86e5 e2483e1 b4a0040 54916c4 e2483e1 b4a0040 e2483e1 b4a0040 e2483e1 b4a0040 e2483e1 8ba86e5 e2483e1 4f7c20c 42514f7 4f7c20c ba0ca62 4f7c20c 54916c4 e2483e1 4f7c20c e2483e1 54916c4 e2483e1 4f7c20c e2483e1 4f7c20c e2483e1 99c38a1 4f7c20c e2483e1 b4a0040 e2483e1 b4a0040 4f7c20c b4a0040 e2483e1 4f7c20c e2483e1 4f7c20c ba0ca62 4f7c20c e2483e1 9aba56f 16e2cb0 9aba56f e2483e1 348d031 9aba56f ba0ca62 2acfed7 ba0ca62 e2483e1 4f7c20c ba0ca62 4f7c20c e2483e1 ba0ca62 e2483e1 2acfed7 16e2cb0 98c5ea8 16e2cb0 dbff7e5 58ed767 9aba56f e5bed17 f69039a e5bed17 5fdfe66 47cfad7 500ea0f ba0ca62 500ea0f 1bda8f5 ba0ca62 1bda8f5 348d031 8ba86e5 1bda8f5 e2483e1 ba0ca62 e2483e1 ba0ca62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
# -*- coding: utf-8 -*-
# ------------------------------------------------------------------------------
#
# Copyright 2023 Valory AG
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ------------------------------------------------------------------------------
import time
import pandas as pd
from typing import Any
from enum import Enum
from tqdm import tqdm
import numpy as np
import os
from web3_utils import query_conditional_tokens_gc_subgraph
from get_mech_info import (
DATETIME_60_DAYS_AGO,
update_fpmmTrades_parquet,
update_tools_parquet,
update_all_trades_parquet,
)
from utils import (
wei_to_unit,
convert_hex_to_int,
JSON_DATA_DIR,
DATA_DIR,
DEFAULT_MECH_FEE,
TMP_DIR,
)
from staking import label_trades_by_staking
from nr_mech_calls import (
create_unknown_traders_df,
transform_to_datetime,
compute_mech_calls_based_on_timestamps,
)
DUST_THRESHOLD = 10000000000000
INVALID_ANSWER = -1
DEFAULT_60_DAYS_AGO_TIMESTAMP = (DATETIME_60_DAYS_AGO).timestamp()
WXDAI_CONTRACT_ADDRESS = "0xe91D153E0b41518A2Ce8Dd3D7944Fa863463a97d"
DUST_THRESHOLD = 10000000000000
class MarketState(Enum):
"""Market state"""
OPEN = 1
PENDING = 2
FINALIZING = 3
ARBITRATING = 4
CLOSED = 5
def __str__(self) -> str:
"""Prints the market status."""
return self.name.capitalize()
class MarketAttribute(Enum):
"""Attribute"""
NUM_TRADES = "Num_trades"
WINNER_TRADES = "Winner_trades"
NUM_REDEEMED = "Num_redeemed"
INVESTMENT = "Investment"
FEES = "Fees"
MECH_CALLS = "Mech_calls"
MECH_FEES = "Mech_fees"
EARNINGS = "Earnings"
NET_EARNINGS = "Net_earnings"
REDEMPTIONS = "Redemptions"
ROI = "ROI"
def __str__(self) -> str:
"""Prints the attribute."""
return self.value
def __repr__(self) -> str:
"""Prints the attribute representation."""
return self.name
@staticmethod
def argparse(s: str) -> "MarketAttribute":
"""Performs string conversion to MarketAttribute."""
try:
return MarketAttribute[s.upper()]
except KeyError as e:
raise ValueError(f"Invalid MarketAttribute: {s}") from e
ALL_TRADES_STATS_DF_COLS = [
"trader_address",
"market_creator",
"trade_id",
"creation_timestamp",
"title",
"market_status",
"collateral_amount",
"outcome_index",
"trade_fee_amount",
"outcomes_tokens_traded",
"current_answer",
"is_invalid",
"winning_trade",
"earnings",
"redeemed",
"redeemed_amount",
"num_mech_calls",
"mech_fee_amount",
"net_earnings",
"roi",
]
def _is_redeemed(user_json: dict[str, Any], fpmmTrade: dict[str, Any]) -> bool:
"""Returns whether the user has redeemed the position."""
user_positions = user_json["data"]["user"]["userPositions"]
condition_id = fpmmTrade["fpmm.condition.id"]
for position in user_positions:
position_condition_ids = position["position"]["conditionIds"]
balance = int(position["balance"])
if condition_id in position_condition_ids:
if balance == 0:
return True
# return early
return False
return False
def prepare_profitalibity_data(
tools_filename: str,
trades_filename: str,
) -> pd.DataFrame:
"""Prepare data for profitalibity analysis."""
# Check if tools.parquet is in the same directory
try:
# new tools parquet
tools = pd.read_parquet(DATA_DIR / tools_filename)
# make sure creator_address is in the columns
assert "trader_address" in tools.columns, "trader_address column not found"
# lowercase and strip creator_address
tools["trader_address"] = tools["trader_address"].str.lower().str.strip()
tools.drop_duplicates(
subset=["request_id", "request_block"], keep="last", inplace=True
)
tools.to_parquet(DATA_DIR / tools_filename)
print(f"{tools_filename} loaded")
except FileNotFoundError:
print(f"{tools_filename} not found.")
return
# Check if fpmmTrades.parquet is in the same directory
print("Reading the trades file")
try:
fpmmTrades = pd.read_parquet(DATA_DIR / trades_filename)
except FileNotFoundError:
print(f"Error reading {trades_filename} file .")
# make sure trader_address is in the columns
assert "trader_address" in fpmmTrades.columns, "trader_address column not found"
# lowercase and strip creator_address
fpmmTrades["trader_address"] = fpmmTrades["trader_address"].str.lower().str.strip()
return fpmmTrades
def determine_market_status(trade, current_answer):
"""Determine the market status of a trade."""
if (current_answer is np.nan or current_answer is None) and time.time() >= int(
trade["fpmm.openingTimestamp"]
):
return MarketState.PENDING
elif current_answer is np.nan or current_answer is None:
return MarketState.OPEN
elif trade["fpmm.isPendingArbitration"]:
return MarketState.ARBITRATING
elif time.time() < int(trade["fpmm.answerFinalizedTimestamp"]):
return MarketState.FINALIZING
return MarketState.CLOSED
def analyse_trader(
trader_address: str,
fpmmTrades: pd.DataFrame,
trader_estimated_mech_calls: pd.DataFrame,
daily_info: bool = False,
) -> pd.DataFrame:
"""Analyse a trader's trades"""
fpmmTrades["creation_timestamp"] = pd.to_datetime(fpmmTrades["creationTimestamp"])
fpmmTrades["creation_date"] = fpmmTrades["creation_timestamp"].dt.date
# Filter trades and tools for the given trader
trades = fpmmTrades[fpmmTrades["trader_address"] == trader_address]
# Prepare the DataFrame
trades_df = pd.DataFrame(columns=ALL_TRADES_STATS_DF_COLS)
if trades.empty:
return trades_df
# Fetch user's conditional tokens gc graph
try:
user_json = query_conditional_tokens_gc_subgraph(trader_address)
except Exception as e:
print(f"Error fetching user data: {e}")
return trades_df
# Iterate over the trades
for i, trade in tqdm(trades.iterrows(), total=len(trades), desc="Analysing trades"):
try:
market_answer = trade["fpmm.currentAnswer"]
trading_day = trade["creation_date"]
trade_id = trade["id"]
if not daily_info and not market_answer:
print(f"Skipping trade {i} because currentAnswer is NaN")
continue
# Parsing and computing shared values
collateral_amount = wei_to_unit(float(trade["collateralAmount"]))
fee_amount = wei_to_unit(float(trade["feeAmount"]))
outcome_tokens_traded = wei_to_unit(float(trade["outcomeTokensTraded"]))
earnings, winner_trade = (0, False)
redemption = _is_redeemed(user_json, trade)
current_answer = market_answer if market_answer else None
market_creator = trade["market_creator"]
# Determine market status
market_status = determine_market_status(trade, current_answer)
# Skip non-closed markets
if not daily_info and market_status != MarketState.CLOSED:
print(
f"Skipping trade {i} because market is not closed. Market Status: {market_status}"
)
continue
if current_answer is not None:
current_answer = convert_hex_to_int(current_answer)
# Compute invalidity
is_invalid = current_answer == INVALID_ANSWER
# Compute earnings and winner trade status
if current_answer is None:
earnings = 0.0
winner_trade = None
elif is_invalid:
earnings = collateral_amount
winner_trade = False
elif int(trade["outcomeIndex"]) == current_answer:
earnings = outcome_tokens_traded
winner_trade = True
# Compute mech calls using the title, and trade id
if daily_info:
total_mech_calls = trader_estimated_mech_calls.loc[
(trader_estimated_mech_calls["trading_day"] == trading_day),
"total_mech_calls",
].iloc[0]
else:
total_mech_calls = trader_estimated_mech_calls.loc[
(trader_estimated_mech_calls["market"] == trade["title"])
& (trader_estimated_mech_calls["trade_id"] == trade_id),
"total_mech_calls",
].iloc[0]
net_earnings = (
earnings
- fee_amount
- (total_mech_calls * DEFAULT_MECH_FEE)
- collateral_amount
)
# Assign values to DataFrame
trades_df.loc[i] = {
"trader_address": trader_address,
"market_creator": market_creator,
"trade_id": trade["id"],
"market_status": market_status.name,
"creation_timestamp": trade["creationTimestamp"],
"title": trade["title"],
"collateral_amount": collateral_amount,
"outcome_index": trade["outcomeIndex"],
"trade_fee_amount": fee_amount,
"outcomes_tokens_traded": outcome_tokens_traded,
"current_answer": current_answer,
"is_invalid": is_invalid,
"winning_trade": winner_trade,
"earnings": earnings,
"redeemed": redemption,
"redeemed_amount": earnings if redemption else 0,
"num_mech_calls": total_mech_calls,
"mech_fee_amount": total_mech_calls * DEFAULT_MECH_FEE,
"net_earnings": net_earnings,
"roi": net_earnings
/ (
collateral_amount + fee_amount + total_mech_calls * DEFAULT_MECH_FEE
),
}
except Exception as e:
print(f"Error processing trade {i}: {e}")
print(trade)
continue
return trades_df
def analyse_all_traders(
trades: pd.DataFrame,
estimated_mech_calls: pd.DataFrame,
daily_info: bool = False,
) -> pd.DataFrame:
"""Analyse all creators."""
all_traders = []
for trader in tqdm(
trades["trader_address"].unique(),
total=len(trades["trader_address"].unique()),
desc="Analysing creators",
):
trader_estimated_mech_calls = estimated_mech_calls.loc[
estimated_mech_calls["trader_address"] == trader
]
all_traders.append(
analyse_trader(trader, trades, trader_estimated_mech_calls, daily_info)
)
# concat all creators
all_creators_df = pd.concat(all_traders)
return all_creators_df
def run_profitability_analysis(
tools_filename: str,
trades_filename: str,
merge: bool = False,
):
"""Create all trades analysis."""
# load dfs from data folder for analysis
print(f"Preparing data with {tools_filename} and {trades_filename}")
fpmmTrades = prepare_profitalibity_data(tools_filename, trades_filename)
if merge:
update_tools_parquet(tools_filename)
tools = pd.read_parquet(TMP_DIR / "tools.parquet")
fpmmTrades["creationTimestamp"] = fpmmTrades["creationTimestamp"].apply(
lambda x: transform_to_datetime(x)
)
print("Computing the estimated mech calls dataset")
trade_mech_calls = compute_mech_calls_based_on_timestamps(
fpmmTrades=fpmmTrades, tools=tools
)
trade_mech_calls.to_parquet(TMP_DIR / "trade_mech_calls.parquet")
print(trade_mech_calls.total_mech_calls.describe())
print("Analysing trades...")
all_trades_df = analyse_all_traders(fpmmTrades, trade_mech_calls)
# # merge previous files if requested
if merge:
update_fpmmTrades_parquet(trades_filename)
all_trades_df = update_all_trades_parquet(all_trades_df)
# debugging purposes
all_trades_df.to_parquet(JSON_DATA_DIR / "all_trades_df.parquet", index=False)
# filter invalid markets. Condition: "is_invalid" is True
invalid_trades = all_trades_df.loc[all_trades_df["is_invalid"] == True]
if len(invalid_trades) == 0:
print("No new invalid trades")
else:
if merge:
try:
print("Merging invalid trades parquet file")
old_invalid_trades = pd.read_parquet(
DATA_DIR / "invalid_trades.parquet"
)
merge_df = pd.concat(
[old_invalid_trades, invalid_trades], ignore_index=True
)
invalid_trades = merge_df.drop_duplicates()
except Exception as e:
print(f"Error updating the invalid trades parquet {e}")
invalid_trades.to_parquet(DATA_DIR / "invalid_trades.parquet", index=False)
all_trades_df = all_trades_df.loc[all_trades_df["is_invalid"] == False]
# add staking labels
all_trades_df = label_trades_by_staking(trades_df=all_trades_df)
# create the unknown traders dataset
print("Creating unknown traders dataset")
unknown_traders_df, all_trades_df = create_unknown_traders_df(
trades_df=all_trades_df
)
unknown_traders_df.to_parquet(DATA_DIR / "unknown_traders.parquet", index=False)
# save to parquet
all_trades_df.to_parquet(DATA_DIR / "all_trades_profitability.parquet", index=False)
print("Done!")
return all_trades_df
if __name__ == "__main__":
# updating the whole fpmmTrades parquet file instead of just the new ones
# trade_mech_calls = pd.read_parquet(TMP_DIR / "result_df.parquet")
# fpmmTrades = pd.read_parquet(TMP_DIR / "fpmmTrades.parquet")
# fpmmTrades["creationTimestamp"] = fpmmTrades["creationTimestamp"].apply(
# lambda x: transform_to_datetime(x)
# )
# all_trades_df = analyse_all_traders(fpmmTrades, trade_mech_calls)
# all_trades_df.to_parquet(TMP_DIR / "all_trades_df.parquet", index=False)
run_profitability_analysis("file1", "file2")
|