Commit
·
5d93d9f
1
Parent(s):
e5bed17
adding invalid markets graphs
Browse files- app.py +46 -5
- data/fpmmTrades.parquet +2 -2
- notebooks/invalid_markets.ipynb +0 -0
- tabs/invalid_markets.py +59 -0
app.py
CHANGED
|
@@ -25,6 +25,14 @@ from tabs.tool_accuracy import (
|
|
| 25 |
plot_tools_accuracy_graph,
|
| 26 |
plot_tools_weighted_accuracy_graph,
|
| 27 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
from tabs.error import (
|
| 29 |
get_error_data,
|
| 30 |
get_error_data_overall,
|
|
@@ -86,11 +94,18 @@ def get_last_one_month_data():
|
|
| 86 |
|
| 87 |
def get_all_data():
|
| 88 |
"""
|
| 89 |
-
Get all data from the tools.parquet, tools_accuracy and
|
| 90 |
"""
|
| 91 |
logger.info("Getting all data")
|
| 92 |
con = duckdb.connect(":memory:")
|
| 93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
# Query to fetch tools accuracy data
|
| 95 |
query3 = f"""
|
| 96 |
SELECT *
|
|
@@ -115,14 +130,14 @@ def get_all_data():
|
|
| 115 |
|
| 116 |
con.close()
|
| 117 |
|
| 118 |
-
return df1, df2, df3
|
| 119 |
|
| 120 |
|
| 121 |
def prepare_data():
|
| 122 |
"""
|
| 123 |
Prepare the data for the dashboard
|
| 124 |
"""
|
| 125 |
-
tools_df, trades_df, tools_accuracy_info = get_all_data()
|
| 126 |
|
| 127 |
tools_df["request_time"] = pd.to_datetime(tools_df["request_time"])
|
| 128 |
trades_df["creation_timestamp"] = pd.to_datetime(trades_df["creation_timestamp"])
|
|
@@ -133,10 +148,15 @@ def prepare_data():
|
|
| 133 |
print("weighted accuracy info")
|
| 134 |
print(tools_accuracy_info.head())
|
| 135 |
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
|
| 139 |
-
tools_df, trades_df, tools_accuracy_info = prepare_data()
|
| 140 |
|
| 141 |
|
| 142 |
demo = gr.Blocks()
|
|
@@ -279,6 +299,27 @@ with demo:
|
|
| 279 |
with gr.Row():
|
| 280 |
plot_tools_weighted_accuracy_graph(tools_accuracy_info)
|
| 281 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
with gr.TabItem("🏥 Tool Error Dashboard"):
|
| 283 |
with gr.Row():
|
| 284 |
gr.Markdown("# All tools errors")
|
|
|
|
| 25 |
plot_tools_accuracy_graph,
|
| 26 |
plot_tools_weighted_accuracy_graph,
|
| 27 |
)
|
| 28 |
+
|
| 29 |
+
from tabs.invalid_markets import (
|
| 30 |
+
plot_daily_dist_invalid_trades,
|
| 31 |
+
plot_ratio_invalid_trades_per_market,
|
| 32 |
+
plot_top_invalid_markets,
|
| 33 |
+
plot_daily_nr_invalid_markets,
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
from tabs.error import (
|
| 37 |
get_error_data,
|
| 38 |
get_error_data_overall,
|
|
|
|
| 94 |
|
| 95 |
def get_all_data():
|
| 96 |
"""
|
| 97 |
+
Get all data from the tools.parquet, tools_accuracy and trades parquet files
|
| 98 |
"""
|
| 99 |
logger.info("Getting all data")
|
| 100 |
con = duckdb.connect(":memory:")
|
| 101 |
|
| 102 |
+
# Query to fetch invalid trades data
|
| 103 |
+
query4 = f"""
|
| 104 |
+
SELECT *
|
| 105 |
+
FROM read_parquet('./data/invalid_trades.parquet')
|
| 106 |
+
"""
|
| 107 |
+
df4 = con.execute(query4).fetchdf()
|
| 108 |
+
|
| 109 |
# Query to fetch tools accuracy data
|
| 110 |
query3 = f"""
|
| 111 |
SELECT *
|
|
|
|
| 130 |
|
| 131 |
con.close()
|
| 132 |
|
| 133 |
+
return df1, df2, df3, df4
|
| 134 |
|
| 135 |
|
| 136 |
def prepare_data():
|
| 137 |
"""
|
| 138 |
Prepare the data for the dashboard
|
| 139 |
"""
|
| 140 |
+
tools_df, trades_df, tools_accuracy_info, invalid_trades = get_all_data()
|
| 141 |
|
| 142 |
tools_df["request_time"] = pd.to_datetime(tools_df["request_time"])
|
| 143 |
trades_df["creation_timestamp"] = pd.to_datetime(trades_df["creation_timestamp"])
|
|
|
|
| 148 |
print("weighted accuracy info")
|
| 149 |
print(tools_accuracy_info.head())
|
| 150 |
|
| 151 |
+
invalid_trades["creation_timestamp"] = pd.to_datetime(
|
| 152 |
+
invalid_trades["creation_timestamp"]
|
| 153 |
+
)
|
| 154 |
+
invalid_trades["creation_date"] = invalid_trades["creation_timestamp"].dt.date
|
| 155 |
+
|
| 156 |
+
return tools_df, trades_df, tools_accuracy_info, invalid_trades
|
| 157 |
|
| 158 |
|
| 159 |
+
tools_df, trades_df, tools_accuracy_info, invalid_trades = prepare_data()
|
| 160 |
|
| 161 |
|
| 162 |
demo = gr.Blocks()
|
|
|
|
| 299 |
with gr.Row():
|
| 300 |
plot_tools_weighted_accuracy_graph(tools_accuracy_info)
|
| 301 |
|
| 302 |
+
with gr.TabItem("⛔ Invalid Markets Dashboard"):
|
| 303 |
+
with gr.Row():
|
| 304 |
+
gr.Markdown("# Daily distribution of invalid trades")
|
| 305 |
+
with gr.Row():
|
| 306 |
+
plot_daily_dist_invalid_trades(invalid_trades)
|
| 307 |
+
|
| 308 |
+
with gr.Row():
|
| 309 |
+
gr.Markdown("# Ratio of invalid trades per market")
|
| 310 |
+
with gr.Row():
|
| 311 |
+
plot_ratio_invalid_trades_per_market(invalid_trades)
|
| 312 |
+
|
| 313 |
+
with gr.Row():
|
| 314 |
+
gr.Markdown("# Top markets with invalid trades")
|
| 315 |
+
with gr.Row():
|
| 316 |
+
plot_top_invalid_markets(invalid_trades)
|
| 317 |
+
|
| 318 |
+
with gr.Row():
|
| 319 |
+
gr.Markdown("# Daily distribution of invalid markets")
|
| 320 |
+
with gr.Row():
|
| 321 |
+
plot_daily_nr_invalid_markets(invalid_trades)
|
| 322 |
+
|
| 323 |
with gr.TabItem("🏥 Tool Error Dashboard"):
|
| 324 |
with gr.Row():
|
| 325 |
gr.Markdown("# All tools errors")
|
data/fpmmTrades.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:33d2a861848b7f5cd5ccd562355a16cc1ac6ee7ed41ae910d3e837290356b89c
|
| 3 |
+
size 1372727
|
notebooks/invalid_markets.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tabs/invalid_markets.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import seaborn as sns
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def plot_daily_dist_invalid_trades(invalid_trades: pd.DataFrame):
|
| 8 |
+
"""Function to paint the distribution of daily invalid trades, no matter which market"""
|
| 9 |
+
plot = sns.histplot(data=invalid_trades, x="creation_date", kde=True)
|
| 10 |
+
plt.xticks(rotation=45, ha="right")
|
| 11 |
+
plt.xlabel("Creation date")
|
| 12 |
+
plt.ylabel("Daily number of invalid trades")
|
| 13 |
+
plt.title("Distribution of daily invalid trades over time")
|
| 14 |
+
return gr.Plot(value=plot.get_figure())
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def plot_daily_nr_invalid_markets(invalid_trades: pd.DataFrame):
|
| 18 |
+
"""Function to paint the number of invalid markets over time"""
|
| 19 |
+
daily_invalid_markets = (
|
| 20 |
+
invalid_trades.groupby("creation_date")
|
| 21 |
+
.agg(trades_count=("title", "count"), nr_markets=("title", "nunique"))
|
| 22 |
+
.reset_index()
|
| 23 |
+
)
|
| 24 |
+
sns.set_theme(palette="viridis")
|
| 25 |
+
plot = sns.lineplot(data=daily_invalid_markets, x="creation_date", y="nr_markets")
|
| 26 |
+
plt.xticks(rotation=45, ha="right")
|
| 27 |
+
plt.xlabel("Creation date")
|
| 28 |
+
plt.ylabel("Daily number of invalid markets")
|
| 29 |
+
plt.title("Evolution of daily invalid markets over time")
|
| 30 |
+
return gr.Plot(value=plot.get_figure())
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def plot_ratio_invalid_trades_per_market(invalid_trades: pd.DataFrame):
|
| 34 |
+
"""Function to paint the number of invalid trades that the same market accummulates"""
|
| 35 |
+
cat = invalid_trades["title"]
|
| 36 |
+
codes, uniques = pd.factorize(cat)
|
| 37 |
+
|
| 38 |
+
# add the IDs as a new column to the original dataframe
|
| 39 |
+
invalid_trades["title_id"] = codes
|
| 40 |
+
plot = sns.displot(invalid_trades, x="title_id")
|
| 41 |
+
plt.xlabel("market id")
|
| 42 |
+
plt.ylabel("Total number of invalid trades by market")
|
| 43 |
+
plt.title("Distribution of invalid trades per market")
|
| 44 |
+
return gr.Plot(value=plot.get_figure())
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def plot_top_invalid_markets(invalid_trades: pd.DataFrame):
|
| 48 |
+
"""Function to paint the top markets with the highest number of invalid trades"""
|
| 49 |
+
top_invalid_markets = invalid_trades.title.value_counts().reset_index()
|
| 50 |
+
top_invalid_markets.rename(columns={"count": "nr_invalid_trades"}, inplace=True)
|
| 51 |
+
plt.figure(figsize=(25, 10))
|
| 52 |
+
plot = sns.barplot(
|
| 53 |
+
top_invalid_markets,
|
| 54 |
+
x="nr_invalid_trades",
|
| 55 |
+
y="title",
|
| 56 |
+
hue="title",
|
| 57 |
+
dodge=False,
|
| 58 |
+
)
|
| 59 |
+
return gr.Plot(value=plot.get_figure())
|