cyberosa
commited on
Commit
·
8c99d65
1
Parent(s):
88f9d70
Adding first prototype of top three tools percentage of reqs
Browse files- app.py +12 -0
- tabs/tool_accuracy.py +86 -0
app.py
CHANGED
@@ -34,6 +34,7 @@ from tabs.tool_accuracy import (
|
|
34 |
plot_tools_weighted_accuracy_rotated_graph,
|
35 |
plot_tools_accuracy_rotated_graph,
|
36 |
compute_weighted_accuracy,
|
|
|
37 |
)
|
38 |
|
39 |
from tabs.invalid_markets import (
|
@@ -536,6 +537,17 @@ with demo:
|
|
536 |
with gr.Row():
|
537 |
_ = plot_tools_weighted_accuracy_rotated_graph(tools_accuracy_info)
|
538 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
539 |
with gr.TabItem("⛔ Invalid Markets Dashboard"):
|
540 |
with gr.Row():
|
541 |
gr.Markdown("# Daily distribution of invalid trades")
|
|
|
34 |
plot_tools_weighted_accuracy_rotated_graph,
|
35 |
plot_tools_accuracy_rotated_graph,
|
36 |
compute_weighted_accuracy,
|
37 |
+
plot_mech_requests_topthree_tools,
|
38 |
)
|
39 |
|
40 |
from tabs.invalid_markets import (
|
|
|
537 |
with gr.Row():
|
538 |
_ = plot_tools_weighted_accuracy_rotated_graph(tools_accuracy_info)
|
539 |
|
540 |
+
with gr.Row():
|
541 |
+
gr.Markdown(
|
542 |
+
"# Mech requests percentage of the top three tools from the daily total"
|
543 |
+
)
|
544 |
+
with gr.Row():
|
545 |
+
_ = plot_mech_requests_topthree_tools(
|
546 |
+
daily_mech_requests=daily_mech_requests,
|
547 |
+
tools_accuracy_info=tools_accuracy_info,
|
548 |
+
top=3,
|
549 |
+
)
|
550 |
+
|
551 |
with gr.TabItem("⛔ Invalid Markets Dashboard"):
|
552 |
with gr.Row():
|
553 |
gr.Markdown("# Daily distribution of invalid trades")
|
tabs/tool_accuracy.py
CHANGED
@@ -4,6 +4,7 @@ import matplotlib.pyplot as plt
|
|
4 |
import seaborn as sns
|
5 |
from typing import Tuple
|
6 |
import plotly.express as px
|
|
|
7 |
|
8 |
VOLUME_FACTOR_REGULARIZATION = 0.5
|
9 |
UNSCALED_WEIGHTED_ACCURACY_INTERVAL = (-0.5, 100.5)
|
@@ -150,3 +151,88 @@ def plot_tools_weighted_accuracy_rotated_graph(
|
|
150 |
return gr.Plot(
|
151 |
value=fig,
|
152 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import seaborn as sns
|
5 |
from typing import Tuple
|
6 |
import plotly.express as px
|
7 |
+
import numpy as np
|
8 |
|
9 |
VOLUME_FACTOR_REGULARIZATION = 0.5
|
10 |
UNSCALED_WEIGHTED_ACCURACY_INTERVAL = (-0.5, 100.5)
|
|
|
151 |
return gr.Plot(
|
152 |
value=fig,
|
153 |
)
|
154 |
+
|
155 |
+
|
156 |
+
def plot_mech_requests_topthree_tools(
|
157 |
+
daily_mech_requests: pd.DataFrame, tools_accuracy_info: pd.DataFrame, top: int
|
158 |
+
):
|
159 |
+
"""Function to plot the percentage of mech requests from the top three tools"""
|
160 |
+
# Get the top three tools
|
161 |
+
top_tools = tools_accuracy_info.sort_values(
|
162 |
+
by="tool_accuracy", ascending=False
|
163 |
+
).head(top)
|
164 |
+
top_tools = top_tools.tool.tolist()
|
165 |
+
# Filter the daily mech requests for the top three tools
|
166 |
+
daily_mech_requests_local_copy = daily_mech_requests.copy()
|
167 |
+
daily_mech_requests_local_copy = daily_mech_requests_local_copy[
|
168 |
+
daily_mech_requests_local_copy["market_creator"] == "all"
|
169 |
+
]
|
170 |
+
# Get the daily total of mech requests no matter the tool
|
171 |
+
total_daily_mech_requests = (
|
172 |
+
daily_mech_requests_local_copy.groupby(["request_date"])
|
173 |
+
.agg({"total_mech_requests": "sum"})
|
174 |
+
.reset_index()
|
175 |
+
)
|
176 |
+
print("total_daily_mech_requests", total_daily_mech_requests.head())
|
177 |
+
total_daily_mech_requests.rename(
|
178 |
+
columns={"total_mech_requests": "total_daily_mech_requests"},
|
179 |
+
inplace=True,
|
180 |
+
)
|
181 |
+
# Merge the total daily mech requests with the daily mech requests
|
182 |
+
daily_mech_requests_local_copy = pd.merge(
|
183 |
+
daily_mech_requests_local_copy,
|
184 |
+
total_daily_mech_requests,
|
185 |
+
on="request_date",
|
186 |
+
how="left",
|
187 |
+
)
|
188 |
+
# Compute the percentage of mech requests for each tool
|
189 |
+
daily_mech_requests_local_copy["percentage"] = (
|
190 |
+
daily_mech_requests_local_copy["total_mech_requests"]
|
191 |
+
/ daily_mech_requests_local_copy["total_daily_mech_requests"]
|
192 |
+
) * 100
|
193 |
+
|
194 |
+
daily_mech_requests_local_copy = daily_mech_requests_local_copy[
|
195 |
+
daily_mech_requests_local_copy.tool.isin(top_tools)
|
196 |
+
]
|
197 |
+
|
198 |
+
# remove the market_creator column
|
199 |
+
daily_mech_requests_local_copy = daily_mech_requests_local_copy.drop(
|
200 |
+
columns=["market_creator"]
|
201 |
+
)
|
202 |
+
|
203 |
+
# Create a pivot table to get the total mech requests per tool
|
204 |
+
pivoted = daily_mech_requests_local_copy.pivot(
|
205 |
+
index="request_date", columns="tool", values="percentage"
|
206 |
+
)
|
207 |
+
# Sort the columns for each row independently
|
208 |
+
sorted_values = np.sort(pivoted.values, axis=1)[
|
209 |
+
:, ::-1
|
210 |
+
] # sort and reverse (descending)
|
211 |
+
sorted_columns = np.argsort(pivoted.values, axis=1)[:, ::-1] # get sorting indices
|
212 |
+
|
213 |
+
sorted_df = pd.DataFrame(
|
214 |
+
sorted_values,
|
215 |
+
index=pivoted.index,
|
216 |
+
columns=[
|
217 |
+
pivoted.columns[i] for i in sorted_columns[0]
|
218 |
+
], # use first row's order
|
219 |
+
)
|
220 |
+
|
221 |
+
sorted_long = sorted_df.reset_index().melt(
|
222 |
+
id_vars=["request_date"], var_name="tool", value_name="percentage"
|
223 |
+
)
|
224 |
+
|
225 |
+
fig = px.bar(
|
226 |
+
sorted_long,
|
227 |
+
x="request_date",
|
228 |
+
y="percentage",
|
229 |
+
color="tool",
|
230 |
+
color_discrete_map=tools_palette,
|
231 |
+
)
|
232 |
+
fig.update_layout(
|
233 |
+
xaxis_title="Day of the request",
|
234 |
+
yaxis_title="Percentage of Total daily mech requests",
|
235 |
+
legend=dict(yanchor="top", y=0.5),
|
236 |
+
)
|
237 |
+
fig.update_layout(width=WIDTH, height=HEIGHT)
|
238 |
+
return gr.Plot(value=fig)
|