Spaces:
Sleeping
Sleeping
| from datetime import datetime | |
| import gradio as gr | |
| import pandas as pd | |
| import duckdb | |
| import logging | |
| from tabs.tokens_votes_dist import ( | |
| get_based_tokens_distribution, | |
| get_based_votes_distribution, | |
| get_extreme_cases, | |
| ) | |
| from tabs.dist_gap import ( | |
| get_distribution_plot, | |
| get_correlation_map, | |
| get_kde_with_trades, | |
| get_regplot_with_mean_trade_size, | |
| ) | |
| def get_logger(): | |
| logger = logging.getLogger(__name__) | |
| logger.setLevel(logging.DEBUG) | |
| # stream handler and formatter | |
| stream_handler = logging.StreamHandler() | |
| stream_handler.setLevel(logging.DEBUG) | |
| formatter = logging.Formatter( | |
| "%(asctime)s - %(name)s - %(levelname)s - %(message)s" | |
| ) | |
| stream_handler.setFormatter(formatter) | |
| logger.addHandler(stream_handler) | |
| return logger | |
| logger = get_logger() | |
| def prepare_data(): | |
| """ | |
| Get all data from the parquet files | |
| """ | |
| logger.info("Getting all data") | |
| con = duckdb.connect(":memory:") | |
| # Query to fetch invalid trades data | |
| query = f""" | |
| SELECT * | |
| FROM read_parquet('./live_data/markets_live_data.parquet') | |
| """ | |
| df = con.execute(query).fetchdf() | |
| df["sample_datetime"] = df["sample_timestamp"].apply( | |
| lambda x: datetime.fromtimestamp(x) | |
| ) | |
| df["opening_datetime"] = df["openingTimestamp"].apply( | |
| lambda x: datetime.fromtimestamp(int(x)) | |
| ) | |
| df["days_to_resolution"] = (df["opening_datetime"] - df["sample_datetime"]).dt.days | |
| return df | |
| demo = gr.Blocks() | |
| markets_data = prepare_data() | |
| live_markets_data = markets_data.loc[markets_data["open"] == True] | |
| with demo: | |
| gr.HTML("<h1>Olas Predict Live Markets </h1>") | |
| gr.Markdown("This app shows the distributions of predictions on the live markets.") | |
| best_market_id, best_gap, worst_market_id, worst_gap = get_extreme_cases( | |
| live_markets_data | |
| ) | |
| with gr.Tabs(): | |
| with gr.TabItem("๐น Probability distributions of live markets"): | |
| with gr.Row(): | |
| gr.Markdown("Best case: a market with a low gap between distributions") | |
| with gr.Row(): | |
| gr.Markdown(f"Market id = {best_market_id} Dist gap = {best_gap}") | |
| with gr.Row(): | |
| with gr.Column(min_width=350): | |
| gr.Markdown("# Evolution of outcomes probability based on tokens") | |
| best_market_tokens_dist = get_based_tokens_distribution( | |
| best_market_id, live_markets_data | |
| ) | |
| with gr.Column(min_width=350): | |
| gr.Markdown("# Evolution of outcomes probability based on votes") | |
| best_market_votes_dist = get_based_votes_distribution( | |
| best_market_id, live_markets_data | |
| ) | |
| with gr.Row(): | |
| gr.Markdown("Worst case: a market with a high distribution gap metric") | |
| with gr.Row(): | |
| gr.Markdown(f"Market id = {worst_market_id} Dist gap = {worst_gap}") | |
| with gr.Row(): | |
| with gr.Column(min_width=350): | |
| # gr.Markdown("# Evolution of outcomes probability based on tokens") | |
| worst_market_tokens_dist = get_based_tokens_distribution( | |
| worst_market_id, live_markets_data | |
| ) | |
| with gr.Column(min_width=350): | |
| worst_market_votes_dist = get_based_votes_distribution( | |
| worst_market_id, live_markets_data | |
| ) | |
| with gr.TabItem("๐ Distribution gap metric"): | |
| with gr.Row(): | |
| gr.Markdown( | |
| "This metric measures the difference between the probability distribution based on the tokens distribution and the one based on the votes distribution" | |
| ) | |
| with gr.Row(): | |
| gr.Markdown("# Density distribution") | |
| with gr.Row(): | |
| kde_plot = get_distribution_plot(markets_data) | |
| with gr.Row(): | |
| gr.Markdown("# Relationship with number of trades") | |
| with gr.Row(): | |
| kde_trades_plot = get_kde_with_trades(markets_data) | |
| # with gr.Row(): | |
| # gr.Markdown( | |
| # "# Relationship with mean trade size of the market (bet amount in USD)" | |
| # ) | |
| # with gr.Row(): | |
| # reg_plot = get_regplot_with_mean_trade_size(markets_data) | |
| with gr.Row(): | |
| gr.Markdown( | |
| "# Correlation analysis between the metric and market variables" | |
| ) | |
| with gr.Row(): | |
| correlation_plot = get_correlation_map(markets_data) | |
| demo.queue(default_concurrency_limit=40).launch() | |