File size: 1,990 Bytes
d3a33c8
 
 
23381bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35c1ade
1068edf
 
23381bb
4a806db
23381bb
 
 
 
4b5445a
23381bb
 
 
 
 
 
 
d3a33c8
 
 
c74ae45
 
 
 
 
 
 
 
 
 
 
 
 
 
d3a33c8
c74ae45
 
d3a33c8
 
c74ae45
 
d3a33c8
c74ae45
 
 
 
 
d3a33c8
23381bb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

import streamlit as st
import pandas as pd
import psycopg2
import os

# Load DB credentials from Hugging Face secrets or environment variables
DB_HOST = os.getenv("DB_HOST")
DB_PORT = os.getenv("DB_PORT", "5432")
DB_NAME = os.getenv("DB_NAME")
DB_USER = os.getenv("DB_USER")
DB_PASSWORD = os.getenv("DB_PASSWORD")

@st.cache_data(ttl=600)
def get_data():
    try:
        conn = psycopg2.connect(
            host=DB_HOST,
            port=DB_PORT,
            dbname=DB_NAME,
            user=DB_USER,
            password=DB_PASSWORD,
            sslmode="require"

        )
        query = "SELECT country, year, section, question_code, question_text, answer_code, answer_text FROM survey_info;"
        df = pd.read_sql_query(query, conn)
        conn.close()
        return df
    except Exception as e:
        st.error(f"Failed to connect to the database: {e}")
        st.stop()

# Load data
df = get_data()

# Streamlit UI
st.title("🌍 CGD Survey Explorer (Live DB)")

st.sidebar.header("🔎 Filter Questions")

# Dropdown filters (optional)
countries = sorted(df["country"].dropna().unique())
years = sorted(df["year"].dropna().unique())

selected_countries = st.sidebar.multiselect("Select Country", countries, default=countries)
selected_years = st.sidebar.multiselect("Select Year", years, default=years)
keyword = st.sidebar.text_input("Keyword Search (in question)", "")

# Column selector
all_columns = df.columns.tolist()
default_columns = ["country", "question", "responses"]
selected_columns = st.sidebar.multiselect("Columns to Display", all_columns, default=default_columns)

# Apply filters
filtered = df[
    df["country"].isin(selected_countries) &
    df["year"].isin(selected_years)
]

if keyword:
    filtered = filtered[filtered["question"].str.contains(keyword, case=False, na=False)]

# Show results
st.markdown("### Filtered Results")
if not filtered.empty:
    st.dataframe(filtered[selected_columns])
else:
    st.info("No matching questions found.")