Spaces:
Sleeping
Sleeping
| import os, io, json, gc | |
| import streamlit as st | |
| import pandas as pd | |
| import psycopg2 | |
| import boto3, torch | |
| from sentence_transformers import SentenceTransformer, util | |
| # ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| # 1) DB credentials (from HF secrets or env) β original | |
| # ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| DB_HOST = os.getenv("DB_HOST") | |
| DB_PORT = os.getenv("DB_PORT", "5432") | |
| DB_NAME = os.getenv("DB_NAME") | |
| DB_PASSWORD = os.getenv("DB_PASSWORD") | |
| def get_data() -> pd.DataFrame: | |
| try: | |
| conn = psycopg2.connect( | |
| host=DB_HOST, | |
| dbname=DB_NAME, | |
| user=DB_USER, | |
| password=DB_PASSWORD, | |
| sslmode="require", | |
| ) | |
| query = """ | |
| SELECT id, country, year, section, | |
| question_code, question_text, | |
| answer_code, answer_text | |
| FROM survey_info; | |
| """ | |
| df_ = pd.read_sql_query(query, conn) | |
| conn.close() | |
| return df_ | |
| except Exception as e: | |
| st.error(f"Failed to connect to the database: {e}") | |
| st.stop() | |
| df = get_data() # β original DataFrame | |
| # Build a quick lookup row-index β DataFrame row for later | |
| row_lookup = {row.id: i for i, row in df.iterrows()} | |
| # ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| # 2) Load embeddings + ids once per session (S3) β new, cached | |
| # ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| def load_embeddings(): | |
| # credentials already in env (HF secrets) β boto3 will pick them up | |
| BUCKET = "cgd-embeddings-bucket" | |
| KEY = "survey_info_embeddings.pt" # dict {'ids', 'embeddings'} | |
| buf = io.BytesIO() | |
| boto3.client("s3").download_fileobj(BUCKET, KEY, buf) | |
| buf.seek(0) | |
| ckpt = torch.load(buf, map_location="cpu") | |
| buf.close(); gc.collect() | |
| if not (isinstance(ckpt, dict) and {"ids","embeddings"} <= ckpt.keys()): | |
| st.error("Bad checkpoint format in survey_info_embeddings.pt"); st.stop() | |
| return ckpt["ids"], ckpt["embeddings"] | |
| ids_list, emb_tensor = load_embeddings() | |
| # ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| # 3) Streamlit UI β original filters + new semantic search | |
| # ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| st.title("π CGD Survey Explorer (Live DB)") | |
| st.sidebar.header("π Filter Questions") | |
| country_options = sorted(df["country"].dropna().unique()) | |
| year_options = sorted(df["year"].dropna().unique()) | |
| selected_countries = st.sidebar.multiselect("Select Country/Countries", country_options) | |
| selected_years = st.sidebar.multiselect("Select Year(s)", year_options) | |
| keyword = st.sidebar.text_input( | |
| "Keyword Search (Question text / Answer text / Question code)", "" | |
| ) | |
| group_by_question = st.sidebar.checkbox("Group by Question Text") | |
| # ββ new semantic search panel βββββββββββββββββββββββββββββββββββββββββββ | |
| st.sidebar.markdown("---") | |
| st.sidebar.subheader("π§ Semantic Search") | |
| sem_query = st.sidebar.text_input("Enter a natural-language query") | |
| if st.sidebar.button("Search", disabled=not sem_query.strip()): | |
| with st.spinner("Embedding & searchingβ¦"): | |
| model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") | |
| q_vec = model.encode(sem_query.strip(), convert_to_tensor=True).cpu() | |
| scores = util.cos_sim(q_vec, emb_tensor)[0] | |
| top_vals, top_idx = torch.topk(scores, k=10) # grab extra | |
| results = [] | |
| for score, emb_row in zip(top_vals.tolist(), top_idx.tolist()): | |
| db_id = ids_list[emb_row] | |
| if db_id in row_lookup: | |
| row = df.iloc[row_lookup[db_id]] | |
| if row["question_text"] and row["answer_text"]: | |
| results.append({ | |
| "Score": f"{score:.3f}", | |
| "Country": row["country"], | |
| "Year": row["year"], | |
| "Question": row["question_text"], | |
| "Answer": row["answer_text"], | |
| }) | |
| if results: | |
| st.subheader(f"π Semantic Results ({len(results)} found)") | |
| st.dataframe(pd.DataFrame(results).head(5)) | |
| else: | |
| st.info("No semantic matches found.") | |
| st.markdown("---") | |
| # ββ apply original filters ββββββββββββββββββββββββββββββββββββββββββββββ | |
| filtered = df[ | |
| (df["country"].isin(selected_countries) if selected_countries else True) & | |
| (df["year"].isin(selected_years) if selected_years else True) & | |
| ( | |
| df["question_text"].str.contains(keyword, case=False, na=False) | | |
| df["answer_text"].str.contains(keyword, case=False, na=False) | | |
| df["question_code"].astype(str).str.contains(keyword, case=False, na=False) | |
| ) | |
| ] | |
| # ββ original output logic βββββββββββββββββββββββ | |
| if group_by_question: | |
| st.subheader("π Grouped by Question Text") | |
| grouped = ( | |
| filtered.groupby("question_text") | |
| .agg({ | |
| "country": lambda x: sorted(set(x)), | |
| "year": lambda x: sorted(set(x)), | |
| "answer_text": lambda x: list(x)[:3] | |
| }) | |
| .reset_index() | |
| .rename(columns={ | |
| "country": "Countries", | |
| "year": "Years", | |
| "answer_text": "Sample Answers" | |
| }) | |
| ) | |
| st.dataframe(grouped) | |
| if grouped.empty: | |
| st.info("No questions found with current filters.") | |
| else: | |
| heading_parts = [] | |
| if selected_countries: | |
| heading_parts.append("Countries: " + ", ".join(selected_countries)) | |
| if selected_years: | |
| heading_parts.append("Years: " + ", ".join(map(str, selected_years))) | |
| st.markdown("### Results for " + (" | ".join(heading_parts) if heading_parts else "All Countries and Years")) | |
| st.dataframe(filtered[["country", "year", "question_text", "answer_text"]]) | |
| if filtered.empty: | |
| st.info("No matching questions found.") |