Spaces:
Sleeping
Sleeping
#!/usr/bin/env python3 | |
# app.py β CGD Survey Explorer + merged semantic search | |
import os, io, json, gc | |
import streamlit as st | |
import pandas as pd | |
import psycopg2 | |
import boto3, torch | |
from sentence_transformers import SentenceTransformer, util | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# 1) Database credentials (provided via HF Secrets / env vars) | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
DB_HOST = os.getenv("DB_HOST") # set these in the Spaceβs Secrets | |
DB_PORT = os.getenv("DB_PORT", "5432") | |
DB_NAME = os.getenv("DB_NAME") | |
DB_USER = os.getenv("DB_USER") | |
DB_PASSWORD = os.getenv("DB_PASSWORD") | |
def get_data() -> pd.DataFrame: | |
"""Pull the full survey_info table (cached for 10 min).""" | |
conn = psycopg2.connect( | |
host=DB_HOST, | |
port=DB_PORT, | |
dbname=DB_NAME, | |
user=DB_USER, | |
password=DB_PASSWORD, | |
sslmode="require", | |
) | |
df_ = pd.read_sql_query( | |
"""SELECT id, country, year, section, | |
question_code, question_text, | |
answer_code, answer_text | |
FROM survey_info;""", | |
conn, | |
) | |
conn.close() | |
return df_ | |
df = get_data() | |
row_lookup = {row.id: i for i, row in df.iterrows()} | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# 2) Pre-computed embeddings (ids + tensor) β download once per session | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
def load_embeddings(): | |
BUCKET = "cgd-embeddings-bucket" | |
KEY = "survey_info_embeddings.pt" # contains {'ids', 'embeddings'} | |
buf = io.BytesIO() | |
boto3.client("s3").download_fileobj(BUCKET, KEY, buf) | |
buf.seek(0) | |
ckpt = torch.load(buf, map_location="cpu") | |
buf.close(); gc.collect() | |
if not (isinstance(ckpt, dict) and {"ids", "embeddings"} <= ckpt.keys()): | |
st.error("Bad checkpoint format in survey_info_embeddings.pt"); st.stop() | |
return ckpt["ids"], ckpt["embeddings"] | |
ids_list, emb_tensor = load_embeddings() | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# 3) Streamlit UI | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
st.title("π CGD Survey Explorer (Live DB)") | |
st.sidebar.header("π Filter Questions") | |
country_options = sorted(df["country"].dropna().unique()) | |
year_options = sorted(df["year"].dropna().unique()) | |
sel_countries = st.sidebar.multiselect("Select Country/Countries", country_options) | |
sel_years = st.sidebar.multiselect("Select Year(s)", year_options) | |
keyword = st.sidebar.text_input( | |
"Keyword Search (Question text / Answer text / Question code)", "" | |
) | |
group_by_question = st.sidebar.checkbox("Group by Question Text") | |
# --- Semantic-search input (kept in sidebar) --------------------------- | |
st.sidebar.markdown("---") | |
st.sidebar.subheader("π§ Semantic Search") | |
sem_query = st.sidebar.text_input("Enter a natural-language query") | |
search_clicked = st.sidebar.button("Search", disabled=not sem_query.strip()) | |
# ββ base_filtered: applies dropdown + keyword logic (always computed) ββ | |
base_filtered = df[ | |
(df["country"].isin(sel_countries) if sel_countries else True) & | |
(df["year"].isin(sel_years) if sel_years else True) & | |
( | |
df["question_text"].str.contains(keyword, case=False, na=False) | | |
df["answer_text"].str.contains(keyword, case=False, na=False) | | |
df["question_code"].astype(str).str.contains(keyword, case=False, na=False) | |
) | |
] | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# 4) When the Search button is clicked β build merged table | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
if search_clicked: | |
with st.spinner("Embedding & searchingβ¦"): | |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") | |
q_vec = model.encode(sem_query.strip(), convert_to_tensor=True).cpu() | |
sims = util.cos_sim(q_vec, emb_tensor)[0] | |
top_vals, top_idx = torch.topk(sims, k=50) # get 50 candidates | |
sem_ids = [ids_list[i] for i in top_idx.tolist()] | |
sem_rows = df.loc[df["id"].isin(sem_ids)].copy() | |
score_map = dict(zip(sem_ids, top_vals.tolist())) | |
sem_rows["Score"] = sem_rows["id"].map(score_map) | |
sem_rows = sem_rows.sort_values("Score", ascending=False) | |
remainder = base_filtered.loc[~base_filtered["id"].isin(sem_ids)].copy() | |
remainder["Score"] = "" # blank score for keyword-only rows | |
combined = pd.concat([sem_rows, remainder], ignore_index=True) | |
st.subheader(f"π Combined Results ({len(combined)})") | |
st.dataframe( | |
combined[["Score", "country", "year", "question_text", "answer_text"]], | |
use_container_width=True, | |
) | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# 5) No semantic query β use original keyword filter logic / grouping | |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
else: | |
if group_by_question: | |
st.subheader("π Grouped by Question Text") | |
grouped = ( | |
base_filtered.groupby("question_text") | |
.agg({ | |
"country": lambda x: sorted(set(x)), | |
"year": lambda x: sorted(set(x)), | |
"answer_text": lambda x: list(x)[:3] | |
}) | |
.reset_index() | |
.rename(columns={ | |
"country": "Countries", | |
"year": "Years", | |
"answer_text": "Sample Answers" | |
}) | |
) | |
st.dataframe(grouped, use_container_width=True) | |
if grouped.empty: | |
st.info("No questions found with current filters.") | |
else: | |
heading = [] | |
if sel_countries: heading.append("Countries: " + ", ".join(sel_countries)) | |
if sel_years: heading.append("Years: " + ", ".join(map(str, sel_years))) | |
st.markdown("### Results for " + (" | ".join(heading) if heading else "All Countries and Years")) | |
st.dataframe( | |
base_filtered[["country", "year", "question_text", "answer_text"]], | |
use_container_width=True, | |
) | |
if base_filtered.empty: | |
st.info("No matching questions found.") | |