Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os, io, json, gc
|
| 2 |
import streamlit as st
|
| 3 |
import pandas as pd
|
|
@@ -5,106 +8,106 @@ import psycopg2
|
|
| 5 |
import boto3, torch
|
| 6 |
from sentence_transformers import SentenceTransformer, util
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
# 1)
|
| 10 |
-
#
|
| 11 |
DB_HOST = os.getenv("DB_HOST")
|
| 12 |
DB_PORT = os.getenv("DB_PORT", "5432")
|
| 13 |
DB_NAME = os.getenv("DB_NAME")
|
| 14 |
DB_USER = os.getenv("DB_USER")
|
| 15 |
DB_PASSWORD = os.getenv("DB_PASSWORD")
|
| 16 |
|
| 17 |
-
|
| 18 |
@st.cache_data(ttl=600)
|
| 19 |
def get_data() -> pd.DataFrame:
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
conn.close()
|
| 37 |
-
return df_
|
| 38 |
-
except Exception as e:
|
| 39 |
-
st.error(f"Failed to connect to the database: {e}")
|
| 40 |
-
st.stop()
|
| 41 |
-
|
| 42 |
-
df = get_data() # β original DataFrame
|
| 43 |
-
|
| 44 |
-
# Build a quick lookup row-index β DataFrame row for later
|
| 45 |
row_lookup = {row.id: i for i, row in df.iterrows()}
|
| 46 |
|
| 47 |
-
#
|
| 48 |
-
# 2)
|
| 49 |
-
#
|
| 50 |
@st.cache_resource
|
| 51 |
-
def get_st_model():
|
| 52 |
-
return SentenceTransformer(
|
| 53 |
-
"sentence-transformers/all-MiniLM-L6-v2",
|
| 54 |
-
device="cpu",
|
| 55 |
-
)
|
| 56 |
def load_embeddings():
|
| 57 |
-
|
| 58 |
-
BUCKET = "cgd-embeddings-bucket"
|
| 59 |
-
KEY = "survey_info_embeddings.pt" # dict {'ids', 'embeddings'}
|
| 60 |
buf = io.BytesIO()
|
| 61 |
boto3.client("s3").download_fileobj(BUCKET, KEY, buf)
|
| 62 |
buf.seek(0)
|
| 63 |
ckpt = torch.load(buf, map_location="cpu")
|
| 64 |
buf.close(); gc.collect()
|
| 65 |
-
|
| 66 |
-
if not (isinstance(ckpt, dict) and {"ids","embeddings"} <= ckpt.keys()):
|
| 67 |
st.error("Bad checkpoint format in survey_info_embeddings.pt"); st.stop()
|
| 68 |
-
|
| 69 |
return ckpt["ids"], ckpt["embeddings"]
|
| 70 |
|
| 71 |
ids_list, emb_tensor = load_embeddings()
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
st.title("π CGD Survey Explorer (Live DB)")
|
| 77 |
|
| 78 |
st.sidebar.header("π Filter Questions")
|
|
|
|
|
|
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
-
|
| 82 |
-
year_options = sorted(df["year"].dropna().unique())
|
| 83 |
-
|
| 84 |
-
selected_countries = st.sidebar.multiselect("Select Country/Countries", country_options)
|
| 85 |
-
selected_years = st.sidebar.multiselect("Select Year(s)", year_options)
|
| 86 |
-
keyword = st.sidebar.text_input(
|
| 87 |
-
"Keyword Search (Question text / Answer text / Question code)", ""
|
| 88 |
-
)
|
| 89 |
-
group_by_question = st.sidebar.checkbox("Group by Question Text")
|
| 90 |
-
|
| 91 |
-
# ββ new semantic search panel βββββββββββββββββββββββββββββββββββββββββββ
|
| 92 |
st.sidebar.markdown("---")
|
| 93 |
st.sidebar.subheader("π§ Semantic Search")
|
| 94 |
-
sem_query
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
with st.spinner("Embedding & searchingβ¦"):
|
| 97 |
-
|
| 98 |
-
model = get_st_model() # cached CPU model
|
| 99 |
q_vec = model.encode(
|
| 100 |
sem_query.strip(),
|
| 101 |
convert_to_tensor=True,
|
| 102 |
device="cpu"
|
| 103 |
).cpu()
|
| 104 |
|
| 105 |
-
# 2) semantic similarity
|
| 106 |
sims = util.cos_sim(q_vec, emb_tensor)[0]
|
| 107 |
-
top_vals, top_idx = torch.topk(sims, k=50)
|
| 108 |
|
| 109 |
sem_ids = [ids_list[i] for i in top_idx.tolist()]
|
| 110 |
sem_rows = df.loc[df["id"].isin(sem_ids)].copy()
|
|
@@ -112,9 +115,9 @@ if st.sidebar.button("Search", disabled=not sem_query.strip()):
|
|
| 112 |
sem_rows["Score"] = sem_rows["id"].map(score_map)
|
| 113 |
sem_rows = sem_rows.sort_values("Score", ascending=False)
|
| 114 |
|
| 115 |
-
#
|
| 116 |
remainder = filtered.loc[~filtered["id"].isin(sem_ids)].copy()
|
| 117 |
-
remainder["Score"] = ""
|
| 118 |
|
| 119 |
combined = pd.concat([sem_rows, remainder], ignore_index=True)
|
| 120 |
|
|
@@ -123,23 +126,13 @@ if st.sidebar.button("Search", disabled=not sem_query.strip()):
|
|
| 123 |
combined[["Score", "country", "year", "question_text", "answer_text"]],
|
| 124 |
use_container_width=True,
|
| 125 |
)
|
| 126 |
-
st.stop() # skip
|
| 127 |
-
|
| 128 |
-
# ββ apply original filters ββββββββββββββββββββββββββββββββββββββββββββββ
|
| 129 |
-
filtered = df[
|
| 130 |
-
(df["country"].isin(selected_countries) if selected_countries else True) &
|
| 131 |
-
(df["year"].isin(selected_years) if selected_years else True) &
|
| 132 |
-
(
|
| 133 |
-
df["question_text"].str.contains(keyword, case=False, na=False) |
|
| 134 |
-
df["answer_text"].str.contains(keyword, case=False, na=False) |
|
| 135 |
-
df["question_code"].astype(str).str.contains(keyword, case=False, na=False)
|
| 136 |
-
)
|
| 137 |
-
]
|
| 138 |
|
| 139 |
-
#
|
| 140 |
-
|
|
|
|
|
|
|
| 141 |
st.subheader("π Grouped by Question Text")
|
| 142 |
-
|
| 143 |
grouped = (
|
| 144 |
filtered.groupby("question_text")
|
| 145 |
.agg({
|
|
@@ -154,25 +147,17 @@ if group_by_question:
|
|
| 154 |
"answer_text": "Sample Answers"
|
| 155 |
})
|
| 156 |
)
|
| 157 |
-
|
| 158 |
-
st.dataframe(grouped)
|
| 159 |
-
|
| 160 |
if grouped.empty:
|
| 161 |
st.info("No questions found with current filters.")
|
| 162 |
-
|
| 163 |
else:
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
if
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
st.dataframe(filtered[["country", "year", "question_text", "answer_text"]])
|
| 176 |
-
|
| 177 |
if filtered.empty:
|
| 178 |
-
st.info("No matching questions found.")
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# app.py β CGD Survey Explorer (keyword + semantic in one table)
|
| 3 |
+
|
| 4 |
import os, io, json, gc
|
| 5 |
import streamlit as st
|
| 6 |
import pandas as pd
|
|
|
|
| 8 |
import boto3, torch
|
| 9 |
from sentence_transformers import SentenceTransformer, util
|
| 10 |
|
| 11 |
+
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 12 |
+
# 1) Database credentials (HF Secrets or env vars)
|
| 13 |
+
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 14 |
DB_HOST = os.getenv("DB_HOST")
|
| 15 |
DB_PORT = os.getenv("DB_PORT", "5432")
|
| 16 |
DB_NAME = os.getenv("DB_NAME")
|
| 17 |
DB_USER = os.getenv("DB_USER")
|
| 18 |
DB_PASSWORD = os.getenv("DB_PASSWORD")
|
| 19 |
|
|
|
|
| 20 |
@st.cache_data(ttl=600)
|
| 21 |
def get_data() -> pd.DataFrame:
|
| 22 |
+
"""Read survey_info once every 10 min."""
|
| 23 |
+
conn = psycopg2.connect(
|
| 24 |
+
host=DB_HOST, port=DB_PORT,
|
| 25 |
+
dbname=DB_NAME, user=DB_USER, password=DB_PASSWORD,
|
| 26 |
+
sslmode="require",
|
| 27 |
+
)
|
| 28 |
+
df_ = pd.read_sql_query("""
|
| 29 |
+
SELECT id, country, year, section,
|
| 30 |
+
question_code, question_text,
|
| 31 |
+
answer_code, answer_text
|
| 32 |
+
FROM survey_info;
|
| 33 |
+
""", conn)
|
| 34 |
+
conn.close()
|
| 35 |
+
return df_
|
| 36 |
+
|
| 37 |
+
df = get_data()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
row_lookup = {row.id: i for i, row in df.iterrows()}
|
| 39 |
|
| 40 |
+
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 41 |
+
# 2) Cached resources
|
| 42 |
+
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 43 |
@st.cache_resource
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
def load_embeddings():
|
| 45 |
+
"""Download ids + embedding tensor from S3 once per session."""
|
| 46 |
+
BUCKET, KEY = "cgd-embeddings-bucket", "survey_info_embeddings.pt"
|
|
|
|
| 47 |
buf = io.BytesIO()
|
| 48 |
boto3.client("s3").download_fileobj(BUCKET, KEY, buf)
|
| 49 |
buf.seek(0)
|
| 50 |
ckpt = torch.load(buf, map_location="cpu")
|
| 51 |
buf.close(); gc.collect()
|
| 52 |
+
if not (isinstance(ckpt, dict) and {"ids", "embeddings"} <= ckpt.keys()):
|
|
|
|
| 53 |
st.error("Bad checkpoint format in survey_info_embeddings.pt"); st.stop()
|
|
|
|
| 54 |
return ckpt["ids"], ckpt["embeddings"]
|
| 55 |
|
| 56 |
ids_list, emb_tensor = load_embeddings()
|
| 57 |
|
| 58 |
+
@st.cache_resource
|
| 59 |
+
def get_st_model():
|
| 60 |
+
"""Mini-LM sentence-transformer pinned to CPU (avoids meta-tensor bug)."""
|
| 61 |
+
return SentenceTransformer(
|
| 62 |
+
"sentence-transformers/all-MiniLM-L6-v2",
|
| 63 |
+
device="cpu",
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 67 |
+
# 3) Streamlit UI
|
| 68 |
+
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 69 |
st.title("π CGD Survey Explorer (Live DB)")
|
| 70 |
|
| 71 |
st.sidebar.header("π Filter Questions")
|
| 72 |
+
country_opts = sorted(df["country"].dropna().unique())
|
| 73 |
+
year_opts = sorted(df["year"].dropna().unique())
|
| 74 |
|
| 75 |
+
sel_countries = st.sidebar.multiselect("Select Country/Countries", country_opts)
|
| 76 |
+
sel_years = st.sidebar.multiselect("Select Year(s)", year_opts)
|
| 77 |
+
keyword = st.sidebar.text_input("Keyword Search (Question / Answer / Code)")
|
| 78 |
+
group_by_q = st.sidebar.checkbox("Group by Question Text")
|
| 79 |
|
| 80 |
+
# ββ Semantic search panel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
st.sidebar.markdown("---")
|
| 82 |
st.sidebar.subheader("π§ Semantic Search")
|
| 83 |
+
sem_query = st.sidebar.text_input("Enter a natural-language query")
|
| 84 |
+
search_clicked = st.sidebar.button("Search", disabled=not sem_query.strip())
|
| 85 |
+
|
| 86 |
+
# ββ Always build the keyword/dropdown subset
|
| 87 |
+
filtered = df[
|
| 88 |
+
(df["country"].isin(sel_countries) if sel_countries else True) &
|
| 89 |
+
(df["year"].isin(sel_years) if sel_years else True) &
|
| 90 |
+
(
|
| 91 |
+
df["question_text"].str.contains(keyword, case=False, na=False) |
|
| 92 |
+
df["answer_text"].str.contains(keyword, case=False, na=False) |
|
| 93 |
+
df["question_code"].astype(str).str.contains(keyword, case=False, na=False)
|
| 94 |
+
)
|
| 95 |
+
]
|
| 96 |
+
|
| 97 |
+
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 98 |
+
# 4) Semantic Search β merged table
|
| 99 |
+
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 100 |
+
if search_clicked:
|
| 101 |
with st.spinner("Embedding & searchingβ¦"):
|
| 102 |
+
model = get_st_model()
|
|
|
|
| 103 |
q_vec = model.encode(
|
| 104 |
sem_query.strip(),
|
| 105 |
convert_to_tensor=True,
|
| 106 |
device="cpu"
|
| 107 |
).cpu()
|
| 108 |
|
|
|
|
| 109 |
sims = util.cos_sim(q_vec, emb_tensor)[0]
|
| 110 |
+
top_vals, top_idx = torch.topk(sims, k=50) # 50 candidates
|
| 111 |
|
| 112 |
sem_ids = [ids_list[i] for i in top_idx.tolist()]
|
| 113 |
sem_rows = df.loc[df["id"].isin(sem_ids)].copy()
|
|
|
|
| 115 |
sem_rows["Score"] = sem_rows["id"].map(score_map)
|
| 116 |
sem_rows = sem_rows.sort_values("Score", ascending=False)
|
| 117 |
|
| 118 |
+
# rows that matched keyword/dropdown but not semantic
|
| 119 |
remainder = filtered.loc[~filtered["id"].isin(sem_ids)].copy()
|
| 120 |
+
remainder["Score"] = "" # blank score
|
| 121 |
|
| 122 |
combined = pd.concat([sem_rows, remainder], ignore_index=True)
|
| 123 |
|
|
|
|
| 126 |
combined[["Score", "country", "year", "question_text", "answer_text"]],
|
| 127 |
use_container_width=True,
|
| 128 |
)
|
| 129 |
+
st.stop() # skip original display logic below when semantic ran
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
+
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 132 |
+
# 5) Original display (keyword / filters only)
|
| 133 |
+
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 134 |
+
if group_by_q:
|
| 135 |
st.subheader("π Grouped by Question Text")
|
|
|
|
| 136 |
grouped = (
|
| 137 |
filtered.groupby("question_text")
|
| 138 |
.agg({
|
|
|
|
| 147 |
"answer_text": "Sample Answers"
|
| 148 |
})
|
| 149 |
)
|
| 150 |
+
st.dataframe(grouped, use_container_width=True)
|
|
|
|
|
|
|
| 151 |
if grouped.empty:
|
| 152 |
st.info("No questions found with current filters.")
|
|
|
|
| 153 |
else:
|
| 154 |
+
hdr = []
|
| 155 |
+
if sel_countries: hdr.append("Countries: " + ", ".join(sel_countries))
|
| 156 |
+
if sel_years: hdr.append("Years: " + ", ".join(map(str, sel_years)))
|
| 157 |
+
st.markdown("### Results for " + (" | ".join(hdr) if hdr else "All Countries and Years"))
|
| 158 |
+
st.dataframe(
|
| 159 |
+
filtered[["country", "year", "question_text", "answer_text"]],
|
| 160 |
+
use_container_width=True,
|
| 161 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
if filtered.empty:
|
| 163 |
+
st.info("No matching questions found.")
|