Spaces:
Running
Running
add filter clearing
Browse files
app.py
CHANGED
@@ -69,6 +69,7 @@ w_group = pn.widgets.Checkbox(name="Group by Question Text", value=False)
|
|
69 |
|
70 |
w_semquery = pn.widgets.TextInput(name="Semantic Query")
|
71 |
w_search_button = pn.widgets.Button(name="Semantic Search", button_type="primary")
|
|
|
72 |
|
73 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
74 |
# 3) Unified Results Table (Tabulator)
|
@@ -79,47 +80,20 @@ result_table = pn.widgets.Tabulator(
|
|
79 |
sizing_mode="stretch_width",
|
80 |
layout='fit_columns',
|
81 |
show_index=False,
|
|
|
82 |
)
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
if countries:
|
88 |
-
filt = filt[filt["country"].isin(countries)]
|
89 |
-
if years:
|
90 |
-
filt = filt[filt["year"].isin(years)]
|
91 |
-
if keyword:
|
92 |
-
filt = filt[
|
93 |
-
filt["question_text"].str.contains(keyword, case=False, na=False) |
|
94 |
-
filt["answer_text"].str.contains(keyword, case=False, na=False) |
|
95 |
-
filt["question_code"].astype(str).str.contains(keyword, case=False, na=False)
|
96 |
-
]
|
97 |
-
|
98 |
-
if group:
|
99 |
-
grouped = (
|
100 |
-
filt.groupby("question_text")
|
101 |
-
.agg({
|
102 |
-
"country": lambda x: sorted(set(x)),
|
103 |
-
"year": lambda x: sorted(set(x)),
|
104 |
-
"answer_text": lambda x: list(x)[:3]
|
105 |
-
})
|
106 |
-
.reset_index()
|
107 |
-
.rename(columns={
|
108 |
-
"country": "Countries",
|
109 |
-
"year": "Years",
|
110 |
-
"answer_text": "Sample Answers"
|
111 |
-
})
|
112 |
-
)
|
113 |
-
result_table.value = grouped
|
114 |
-
else:
|
115 |
-
result_table.value = filt[["country", "year", "question_text", "answer_text"]]
|
116 |
-
|
117 |
def semantic_search(event=None):
|
118 |
query = w_semquery.value.strip()
|
119 |
if not query:
|
120 |
return
|
121 |
|
122 |
-
|
|
|
|
|
123 |
filt = df.copy()
|
124 |
if w_countries.value:
|
125 |
filt = filt[filt["country"].isin(w_countries.value)]
|
@@ -132,54 +106,39 @@ def semantic_search(event=None):
|
|
132 |
filt["question_code"].astype(str).str.contains(w_keyword.value, case=False, na=False)
|
133 |
]
|
134 |
|
135 |
-
# Step 2: Load only embeddings for the filtered rows
|
136 |
-
model, ids_list, emb_tensor = get_semantic_resources()
|
137 |
-
|
138 |
-
# Create a mask for filtered IDs
|
139 |
filtered_ids = filt["id"].tolist()
|
140 |
id_to_index = {id_: i for i, id_ in enumerate(ids_list)}
|
141 |
filtered_indices = [id_to_index[id_] for id_ in filtered_ids if id_ in id_to_index]
|
142 |
-
|
143 |
-
|
|
|
|
|
144 |
filtered_embs = emb_tensor[filtered_indices]
|
145 |
-
|
146 |
-
# Step 3: Semantic search only within filtered subset
|
147 |
q_vec = model.encode(query, convert_to_tensor=True, device="cpu").cpu()
|
148 |
sims = util.cos_sim(q_vec, filtered_embs)[0]
|
149 |
top_vals, top_idx = torch.topk(sims, k=50)
|
150 |
-
|
151 |
top_filtered_ids = [filtered_ids[i] for i in top_idx.tolist()]
|
152 |
sem_rows = filt[filt["id"].isin(top_filtered_ids)].copy()
|
153 |
score_map = dict(zip(top_filtered_ids, top_vals.tolist()))
|
154 |
sem_rows["Score"] = sem_rows["id"].map(score_map)
|
155 |
sem_rows = sem_rows.sort_values("Score", ascending=False)
|
156 |
-
|
157 |
-
# Final output
|
158 |
-
result_table.value = sem_rows[["Score", "country", "year", "question_text", "answer_text"]]
|
159 |
|
|
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
filt = filt[
|
168 |
-
filt["question_text"].str.contains(w_keyword.value, case=False, na=False) |
|
169 |
-
filt["answer_text"].str.contains(w_keyword.value, case=False, na=False) |
|
170 |
-
filt["question_code"].astype(str).str.contains(w_keyword.value, case=False, na=False)
|
171 |
-
]
|
172 |
-
|
173 |
-
remainder = filt.loc[~filt["id"].isin(sem_ids)].copy()
|
174 |
-
remainder["Score"] = ""
|
175 |
-
|
176 |
-
combined = pd.concat([sem_rows, remainder], ignore_index=True)
|
177 |
-
result_table.value = combined[["Score", "country", "year", "question_text", "answer_text"]]
|
178 |
|
179 |
w_search_button.on_click(semantic_search)
|
|
|
180 |
|
181 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
182 |
-
#
|
183 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
184 |
sidebar = pn.Column(
|
185 |
"## π Filters",
|
@@ -187,6 +146,8 @@ sidebar = pn.Column(
|
|
187 |
pn.Spacer(height=20),
|
188 |
"## π§ Semantic Search",
|
189 |
w_semquery, w_search_button,
|
|
|
|
|
190 |
width=300
|
191 |
)
|
192 |
|
|
|
69 |
|
70 |
w_semquery = pn.widgets.TextInput(name="Semantic Query")
|
71 |
w_search_button = pn.widgets.Button(name="Semantic Search", button_type="primary")
|
72 |
+
w_clear_filters = pn.widgets.Button(name="Clear Filters", button_type="warning")
|
73 |
|
74 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
75 |
# 3) Unified Results Table (Tabulator)
|
|
|
80 |
sizing_mode="stretch_width",
|
81 |
layout='fit_columns',
|
82 |
show_index=False,
|
83 |
+
show_filter=True
|
84 |
)
|
85 |
|
86 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
87 |
+
# 4) Semantic Search with Filtering
|
88 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
def semantic_search(event=None):
|
90 |
query = w_semquery.value.strip()
|
91 |
if not query:
|
92 |
return
|
93 |
|
94 |
+
model, ids_list, emb_tensor = get_semantic_resources()
|
95 |
+
|
96 |
+
# Apply filters first
|
97 |
filt = df.copy()
|
98 |
if w_countries.value:
|
99 |
filt = filt[filt["country"].isin(w_countries.value)]
|
|
|
106 |
filt["question_code"].astype(str).str.contains(w_keyword.value, case=False, na=False)
|
107 |
]
|
108 |
|
|
|
|
|
|
|
|
|
109 |
filtered_ids = filt["id"].tolist()
|
110 |
id_to_index = {id_: i for i, id_ in enumerate(ids_list)}
|
111 |
filtered_indices = [id_to_index[id_] for id_ in filtered_ids if id_ in id_to_index]
|
112 |
+
if not filtered_indices:
|
113 |
+
result_table.value = pd.DataFrame(columns=["Score", "country", "year", "question_text", "answer_text"])
|
114 |
+
return
|
115 |
+
|
116 |
filtered_embs = emb_tensor[filtered_indices]
|
117 |
+
|
|
|
118 |
q_vec = model.encode(query, convert_to_tensor=True, device="cpu").cpu()
|
119 |
sims = util.cos_sim(q_vec, filtered_embs)[0]
|
120 |
top_vals, top_idx = torch.topk(sims, k=50)
|
121 |
+
|
122 |
top_filtered_ids = [filtered_ids[i] for i in top_idx.tolist()]
|
123 |
sem_rows = filt[filt["id"].isin(top_filtered_ids)].copy()
|
124 |
score_map = dict(zip(top_filtered_ids, top_vals.tolist()))
|
125 |
sem_rows["Score"] = sem_rows["id"].map(score_map)
|
126 |
sem_rows = sem_rows.sort_values("Score", ascending=False)
|
|
|
|
|
|
|
127 |
|
128 |
+
result_table.value = sem_rows[["Score", "country", "year", "question_text", "answer_text"]]
|
129 |
|
130 |
+
def clear_filters(event=None):
|
131 |
+
w_countries.value = []
|
132 |
+
w_years.value = []
|
133 |
+
w_keyword.value = ""
|
134 |
+
w_semquery.value = ""
|
135 |
+
result_table.value = df[["country", "year", "question_text", "answer_text"]].copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
w_search_button.on_click(semantic_search)
|
138 |
+
w_clear_filters.on_click(clear_filters)
|
139 |
|
140 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
141 |
+
# 5) Layout
|
142 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
143 |
sidebar = pn.Column(
|
144 |
"## π Filters",
|
|
|
146 |
pn.Spacer(height=20),
|
147 |
"## π§ Semantic Search",
|
148 |
w_semquery, w_search_button,
|
149 |
+
pn.Spacer(height=20),
|
150 |
+
w_clear_filters,
|
151 |
width=300
|
152 |
)
|
153 |
|