Spaces:
Sleeping
Sleeping
File size: 7,673 Bytes
c863afd d3a33c8 c863afd 23381bb c863afd cc9cf8b c863afd 4e71d04 c863afd 81d02b5 c863afd 81d02b5 c863afd cca0254 c863afd cca0254 81d02b5 c863afd cc9cf8b c863afd cc9cf8b c863afd cc9cf8b 4e71d04 c863afd cc9cf8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
#!/usr/bin/env python3
import os, io, json, gc
import boto3, psycopg2, pandas as pd, torch
import streamlit as st
from sentence_transformers import SentenceTransformer, util
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 0) Hugging Face secrets β env vars (already set inside Spaces)
# DB_HOST / DB_PORT / DB_NAME / DB_USER / DB_PASSWORD
# AWS creds must be in aws_creds.json pushed with the app repo
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
with open("aws_creds.json") as f:
creds = json.load(f)
os.environ["AWS_ACCESS_KEY_ID"] = creds["AccessKey"]
os.environ["AWS_SECRET_ACCESS_KEY"] = creds["SecretAccessKey"]
os.environ["AWS_DEFAULT_REGION"] = "us-east-2"
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 1) DB β DataFrame (cached 10 min) |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
DB_HOST = os.getenv("DB_HOST")
DB_PORT = os.getenv("DB_PORT", "5432")
DB_NAME = os.getenv("DB_NAME")
DB_USER = os.getenv("DB_USER")
DB_PASSWORD = os.getenv("DB_PASSWORD")
@st.cache_data(ttl=600)
def load_survey_dataframe() -> pd.DataFrame:
conn = psycopg2.connect(
host=DB_HOST, port=DB_PORT,
dbname=DB_NAME, user=DB_USER, password=DB_PASSWORD,
sslmode="require",
)
df = pd.read_sql_query(
"""SELECT id, country, year, section,
question_code, question_text,
answer_code, answer_text
FROM survey_info
""",
conn,
)
conn.close()
return df
df = load_survey_dataframe()
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 2) S3 β ids + embeddings (cached for session) |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
@st.cache_resource
def load_embeddings():
BUCKET = "cgd-embeddings-bucket"
KEY = "survey_info_embeddings.pt" # contains {'ids', 'embeddings'}
bio = io.BytesIO()
boto3.client("s3").download_fileobj(BUCKET, KEY, bio)
bio.seek(0)
ckpt = torch.load(bio, map_location="cpu")
bio.close(); gc.collect()
if not (isinstance(ckpt, dict) and {"ids","embeddings"} <= ckpt.keys()):
st.error("Bad checkpoint format"); st.stop()
return ckpt["ids"], ckpt["embeddings"]
ids_list, emb_tensor = load_embeddings()
# build quick lookup from id β row index in DataFrame
row_lookup = {row_id: i for i, row_id in enumerate(df["id"])}
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 3) Streamlit UI |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
st.title("π CGD Survey Explorer (Live DB + Semantic Search)")
# ββ 3a) Sidebar filters (original UI) βββββββββββββββββββββββββββββββββββ
st.sidebar.header("π Filter Questions")
country_opts = sorted(df["country"].dropna().unique())
year_opts = sorted(df["year"].dropna().unique())
sel_countries = st.sidebar.multiselect("Select Country/Countries", country_opts)
sel_years = st.sidebar.multiselect("Select Year(s)", year_opts)
keyword = st.sidebar.text_input(
"Keyword Search (Question / Answer / Code)", ""
)
group_by_q = st.sidebar.checkbox("Group by Question Text")
# Apply keyword & dropdown filters
filtered = df[
(df["country"].isin(sel_countries) if sel_countries else True) &
(df["year"].isin(sel_years) if sel_years else True) &
(
df["question_text"].str.contains(keyword, case=False, na=False) |
df["answer_text"] .str.contains(keyword, case=False, na=False) |
df["question_code"].astype(str).str.contains(keyword, case=False, na=False)
)
]
# ββ 3b) Semantic-search panel βββββββββββββββββββββββββββββββββββββββββββ
st.sidebar.markdown("---")
st.sidebar.subheader("π§ Semantic Search")
sem_query = st.sidebar.text_input("Enter a natural-language query")
if st.sidebar.button("Search", disabled=not sem_query.strip()):
with st.spinner("Embedding & searchingβ¦"):
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
q_vec = model.encode(sem_query.strip(), convert_to_tensor=True).cpu()
scores = util.cos_sim(q_vec, emb_tensor)[0]
top_vals, top_idx = torch.topk(scores, k=10)
results = []
for score, emb_row in zip(top_vals.tolist(), top_idx.tolist()):
db_id = ids_list[emb_row]
if db_id in row_lookup:
row = df.iloc[row_lookup[db_id]]
results.append({
"score": f"{score:.3f}",
"country": row["country"],
"year": row["year"],
"question": row["question_text"],
"answer": row["answer_text"],
})
if results:
st.subheader("π Semantic Results")
st.write(f"Showing top {len(results)} for **{sem_query}**")
st.dataframe(pd.DataFrame(results))
else:
st.info("No semantic matches found.")
st.markdown("---")
# ββ 3c) Original results table / grouped view βββββββββββββββββββββββββββ
if group_by_q:
st.subheader("π Grouped by Question Text")
grouped = (
filtered.groupby("question_text")
.agg({
"country": lambda x: sorted(set(x)),
"year": lambda x: sorted(set(x)),
"answer_text": lambda x: list(x)[:3]
})
.reset_index()
.rename(columns={
"country": "Countries",
"year": "Years",
"answer_text": "Sample Answers"
})
)
st.dataframe(grouped)
if grouped.empty:
st.info("No questions found with current filters.")
else:
# contextual heading
hdr = []
if sel_countries: hdr.append("Countries: " + ", ".join(sel_countries))
if sel_years: hdr.append("Years: " + ", ".join(map(str, sel_years)))
st.markdown("### Results for " + (" | ".join(hdr) if hdr else "All Countries and Years"))
st.dataframe(filtered[["country", "year", "question_text", "answer_text"]])
if filtered.empty:
st.info("No matching questions found.")
|