#!/usr/bin/env python3 import os, io, json, gc import boto3, psycopg2, pandas as pd, torch import streamlit as st from sentence_transformers import SentenceTransformer, util # ──────────────────────────────────────────────────────────────────────── # 0) Hugging Face secrets → env vars (already set inside Spaces) # DB_HOST / DB_PORT / DB_NAME / DB_USER / DB_PASSWORD # AWS creds must be in aws_creds.json pushed with the app repo # ──────────────────────────────────────────────────────────────────────── with open("aws_creds.json") as f: creds = json.load(f) os.environ["AWS_ACCESS_KEY_ID"] = creds["AccessKey"] os.environ["AWS_SECRET_ACCESS_KEY"] = creds["SecretAccessKey"] os.environ["AWS_DEFAULT_REGION"] = "us-east-2" # ──────────────────────────────────────────────────────────────────────── # 1) DB → DataFrame (cached 10 min) | # ──────────────────────────────────────────────────────────────────────── DB_HOST = os.getenv("DB_HOST") DB_PORT = os.getenv("DB_PORT", "5432") DB_NAME = os.getenv("DB_NAME") DB_USER = os.getenv("DB_USER") DB_PASSWORD = os.getenv("DB_PASSWORD") @st.cache_data(ttl=600) def load_survey_dataframe() -> pd.DataFrame: conn = psycopg2.connect( host=DB_HOST, port=DB_PORT, dbname=DB_NAME, user=DB_USER, password=DB_PASSWORD, sslmode="require", ) df = pd.read_sql_query( """SELECT id, country, year, section, question_code, question_text, answer_code, answer_text FROM survey_info """, conn, ) conn.close() return df df = load_survey_dataframe() # ──────────────────────────────────────────────────────────────────────── # 2) S3 → ids + embeddings (cached for session) | # ──────────────────────────────────────────────────────────────────────── @st.cache_resource def load_embeddings(): BUCKET = "cgd-embeddings-bucket" KEY = "survey_info_embeddings.pt" # contains {'ids', 'embeddings'} bio = io.BytesIO() boto3.client("s3").download_fileobj(BUCKET, KEY, bio) bio.seek(0) ckpt = torch.load(bio, map_location="cpu") bio.close(); gc.collect() if not (isinstance(ckpt, dict) and {"ids","embeddings"} <= ckpt.keys()): st.error("Bad checkpoint format"); st.stop() return ckpt["ids"], ckpt["embeddings"] ids_list, emb_tensor = load_embeddings() # build quick lookup from id → row index in DataFrame row_lookup = {row_id: i for i, row_id in enumerate(df["id"])} # ──────────────────────────────────────────────────────────────────────── # 3) Streamlit UI | # ──────────────────────────────────────────────────────────────────────── st.title("🌍 CGD Survey Explorer (Live DB + Semantic Search)") # ── 3a) Sidebar filters (original UI) ─────────────────────────────────── st.sidebar.header("🔎 Filter Questions") country_opts = sorted(df["country"].dropna().unique()) year_opts = sorted(df["year"].dropna().unique()) sel_countries = st.sidebar.multiselect("Select Country/Countries", country_opts) sel_years = st.sidebar.multiselect("Select Year(s)", year_opts) keyword = st.sidebar.text_input( "Keyword Search (Question / Answer / Code)", "" ) group_by_q = st.sidebar.checkbox("Group by Question Text") # Apply keyword & dropdown filters filtered = df[ (df["country"].isin(sel_countries) if sel_countries else True) & (df["year"].isin(sel_years) if sel_years else True) & ( df["question_text"].str.contains(keyword, case=False, na=False) | df["answer_text"] .str.contains(keyword, case=False, na=False) | df["question_code"].astype(str).str.contains(keyword, case=False, na=False) ) ] # ── 3b) Semantic-search panel ─────────────────────────────────────────── st.sidebar.markdown("---") st.sidebar.subheader("🧠 Semantic Search") sem_query = st.sidebar.text_input("Enter a natural-language query") if st.sidebar.button("Search", disabled=not sem_query.strip()): with st.spinner("Embedding & searching…"): model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") q_vec = model.encode(sem_query.strip(), convert_to_tensor=True).cpu() scores = util.cos_sim(q_vec, emb_tensor)[0] top_vals, top_idx = torch.topk(scores, k=10) results = [] for score, emb_row in zip(top_vals.tolist(), top_idx.tolist()): db_id = ids_list[emb_row] if db_id in row_lookup: row = df.iloc[row_lookup[db_id]] results.append({ "score": f"{score:.3f}", "country": row["country"], "year": row["year"], "question": row["question_text"], "answer": row["answer_text"], }) if results: st.subheader("🔍 Semantic Results") st.write(f"Showing top {len(results)} for **{sem_query}**") st.dataframe(pd.DataFrame(results)) else: st.info("No semantic matches found.") st.markdown("---") # ── 3c) Original results table / grouped view ─────────────────────────── if group_by_q: st.subheader("📊 Grouped by Question Text") grouped = ( filtered.groupby("question_text") .agg({ "country": lambda x: sorted(set(x)), "year": lambda x: sorted(set(x)), "answer_text": lambda x: list(x)[:3] }) .reset_index() .rename(columns={ "country": "Countries", "year": "Years", "answer_text": "Sample Answers" }) ) st.dataframe(grouped) if grouped.empty: st.info("No questions found with current filters.") else: # contextual heading hdr = [] if sel_countries: hdr.append("Countries: " + ", ".join(sel_countries)) if sel_years: hdr.append("Years: " + ", ".join(map(str, sel_years))) st.markdown("### Results for " + (" | ".join(hdr) if hdr else "All Countries and Years")) st.dataframe(filtered[["country", "year", "question_text", "answer_text"]]) if filtered.empty: st.info("No matching questions found.")