import os, io, json, gc import streamlit as st import pandas as pd import psycopg2 import boto3, torch from sentence_transformers import SentenceTransformer, util # ──────────────────────────────────────────────────────────────────────── # 1) DB credentials (from HF secrets or env) – original # ──────────────────────────────────────────────────────────────────────── DB_HOST = os.getenv("DB_HOST") DB_PORT = os.getenv("DB_PORT", "5432") DB_NAME = os.getenv("DB_NAME") DB_USER = os.getenv("DB_USER") DB_PASSWORD = os.getenv("DB_PASSWORD") @st.cache_data(ttl=600) def get_data() -> pd.DataFrame: try: conn = psycopg2.connect( host=DB_HOST, port=DB_PORT, dbname=DB_NAME, user=DB_USER, password=DB_PASSWORD, sslmode="require", ) query = """ SELECT id, country, year, section, question_code, question_text, answer_code, answer_text FROM survey_info; """ df_ = pd.read_sql_query(query, conn) conn.close() return df_ except Exception as e: st.error(f"Failed to connect to the database: {e}") st.stop() df = get_data() # ← original DataFrame # Build a quick lookup row-index → DataFrame row for later row_lookup = {row.id: i for i, row in df.iterrows()} # ──────────────────────────────────────────────────────────────────────── # 2) Load embeddings + ids once per session (S3) – new, cached # ──────────────────────────────────────────────────────────────────────── @st.cache_resource def load_embeddings(): # credentials already in env (HF secrets) – boto3 will pick them up BUCKET = "cgd-embeddings-bucket" KEY = "survey_info_embeddings.pt" # dict {'ids', 'embeddings'} buf = io.BytesIO() boto3.client("s3").download_fileobj(BUCKET, KEY, buf) buf.seek(0) ckpt = torch.load(buf, map_location="cpu") buf.close(); gc.collect() if not (isinstance(ckpt, dict) and {"ids","embeddings"} <= ckpt.keys()): st.error("Bad checkpoint format in survey_info_embeddings.pt"); st.stop() return ckpt["ids"], ckpt["embeddings"] ids_list, emb_tensor = load_embeddings() # ──────────────────────────────────────────────────────────────────────── # 3) Streamlit UI – original filters + new semantic search # ──────────────────────────────────────────────────────────────────────── st.title("🌍 CGD Survey Explorer (Live DB)") st.sidebar.header("🔎 Filter Questions") country_options = sorted(df["country"].dropna().unique()) year_options = sorted(df["year"].dropna().unique()) selected_countries = st.sidebar.multiselect("Select Country/Countries", country_options) selected_years = st.sidebar.multiselect("Select Year(s)", year_options) keyword = st.sidebar.text_input( "Keyword Search (Question text / Answer text / Question code)", "" ) group_by_question = st.sidebar.checkbox("Group by Question Text") # ── new semantic search panel ─────────────────────────────────────────── st.sidebar.markdown("---") st.sidebar.subheader("🧠 Semantic Search") sem_query = st.sidebar.text_input("Enter a natural-language query") if st.sidebar.button("Search", disabled=not sem_query.strip()): with st.spinner("Embedding & searching…"): model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") q_vec = model.encode(sem_query.strip(), convert_to_tensor=True).cpu() scores = util.cos_sim(q_vec, emb_tensor)[0] top_vals, top_idx = torch.topk(scores, k=10) # grab extra results = [] for score, emb_row in zip(top_vals.tolist(), top_idx.tolist()): db_id = ids_list[emb_row] if db_id in row_lookup: row = df.iloc[row_lookup[db_id]] if row["question_text"] and row["answer_text"]: results.append({ "Score": f"{score:.3f}", "Country": row["country"], "Year": row["year"], "Question": row["question_text"], "Answer": row["answer_text"], }) if results: st.subheader(f"🔍 Semantic Results ({len(results)} found)") st.dataframe(pd.DataFrame(results).head(5)) else: st.info("No semantic matches found.") st.markdown("---") # ── apply original filters ────────────────────────────────────────────── filtered = df[ (df["country"].isin(selected_countries) if selected_countries else True) & (df["year"].isin(selected_years) if selected_years else True) & ( df["question_text"].str.contains(keyword, case=False, na=False) | df["answer_text"].str.contains(keyword, case=False, na=False) | df["question_code"].astype(str).str.contains(keyword, case=False, na=False) ) ] # ── original output logic ─────────────────────── if group_by_question: st.subheader("📊 Grouped by Question Text") grouped = ( filtered.groupby("question_text") .agg({ "country": lambda x: sorted(set(x)), "year": lambda x: sorted(set(x)), "answer_text": lambda x: list(x)[:3] }) .reset_index() .rename(columns={ "country": "Countries", "year": "Years", "answer_text": "Sample Answers" }) ) st.dataframe(grouped) if grouped.empty: st.info("No questions found with current filters.") else: heading_parts = [] if selected_countries: heading_parts.append("Countries: " + ", ".join(selected_countries)) if selected_years: heading_parts.append("Years: " + ", ".join(map(str, selected_years))) st.markdown("### Results for " + (" | ".join(heading_parts) if heading_parts else "All Countries and Years")) st.dataframe(filtered[["country", "year", "question_text", "answer_text"]]) if filtered.empty: st.info("No matching questions found.")