import streamlit as st
st.markdown("""### TL;DR: give me the keywords!
Here you can get the keywords and topic of the article based on it's title or abstract.""")
st.markdown("

", unsafe_allow_html=True)
#from transformers import pipeline
#pipe = pipeline("ner", "Davlan/distilbert-base-multilingual-cased-ner-hrl")
#st.markdown("#### Title:")
title = st.text_area("Title:")
abstract = st.text_area("abstract:")
from utils.utils import *
import spacy
#import en_core_web_sm
import os
os.system("python3 -m spacy download en")
# Вообще, стоит найти pipeline, заточенный под научный текст.
# Но этим займёмся потом, если будет время.
main_nlp = spacy.load('en_core_web_sm')
text = title + abstract
#text = preprocess(text)
keywords = get_candidates(text, main_nlp)
if not keywords is None and len(keywords) > 0:
st.markdown(f"{keywords}")
else:
st.markdown("Please, try to enter something.")