donee hopefully
Browse files- app.py +100 -0
- requirements.txt +21 -0
- space.yaml +4 -0
app.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify, send_file
|
2 |
+
from flask_cors import CORS
|
3 |
+
import os
|
4 |
+
from langchain_folder.main import ReturnKeywordsfromPrompt
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
import pandas as pd
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import seaborn as sns
|
9 |
+
|
10 |
+
load_dotenv()
|
11 |
+
|
12 |
+
app = Flask(__name__)
|
13 |
+
CORS(app)
|
14 |
+
|
15 |
+
CSV_FILE_PATH = os.getenv('file_path')
|
16 |
+
GRAPH_DIR = './static/graphs'
|
17 |
+
|
18 |
+
|
19 |
+
@app.route('/api/search', methods=['POST'])
|
20 |
+
def search():
|
21 |
+
data = request.get_json()
|
22 |
+
query = data.get('query', '')
|
23 |
+
keywords = ReturnKeywordsfromPrompt(query)
|
24 |
+
return jsonify({"status": "success", "queryReceived": query})
|
25 |
+
|
26 |
+
|
27 |
+
def generate_graphs_from_csv(csv_path, output_dir):
|
28 |
+
df = pd.read_csv(csv_path)
|
29 |
+
os.makedirs(output_dir, exist_ok=True)
|
30 |
+
|
31 |
+
numeric_cols = df.select_dtypes(include='number').columns.tolist()
|
32 |
+
categorical_cols = df.select_dtypes(include='object').columns.tolist()
|
33 |
+
graph_paths = []
|
34 |
+
print (categorical_cols)
|
35 |
+
|
36 |
+
if len(numeric_cols) >= 1:
|
37 |
+
plt.figure(figsize=(4, 3))
|
38 |
+
sns.histplot(df[numeric_cols[0]], kde=True)
|
39 |
+
plt.title(f'{numeric_cols[0]} Distribution')
|
40 |
+
plt.tight_layout()
|
41 |
+
path = f'{output_dir}/graph_1_hist.png'
|
42 |
+
plt.savefig(path)
|
43 |
+
graph_paths.append(path)
|
44 |
+
|
45 |
+
if len(numeric_cols) >= 2 and categorical_cols:
|
46 |
+
plt.figure(figsize=(4, 3))
|
47 |
+
sns.boxplot(data=df, x=categorical_cols[0], y=numeric_cols[1])
|
48 |
+
plt.title(f'{numeric_cols[1]} by {categorical_cols[0]}')
|
49 |
+
plt.tight_layout()
|
50 |
+
path = f'{output_dir}/graph_2_box.png'
|
51 |
+
plt.savefig(path)
|
52 |
+
graph_paths.append(path)
|
53 |
+
|
54 |
+
if categorical_cols:
|
55 |
+
plt.figure(figsize=(4, 3))
|
56 |
+
sns.countplot(data=df, x=categorical_cols[0])
|
57 |
+
plt.title(f'{categorical_cols[0]} Distribution')
|
58 |
+
plt.tight_layout()
|
59 |
+
path = f'{output_dir}/graph_3_count.png'
|
60 |
+
plt.savefig(path)
|
61 |
+
graph_paths.append(path)
|
62 |
+
|
63 |
+
if len(numeric_cols) >= 2:
|
64 |
+
plt.figure(figsize=(4, 3))
|
65 |
+
sns.scatterplot(data=df, x=numeric_cols[0], y=numeric_cols[1])
|
66 |
+
plt.title(f'{numeric_cols[0]} vs {numeric_cols[1]}')
|
67 |
+
plt.tight_layout()
|
68 |
+
path = f'{output_dir}/graph_4_scatter.png'
|
69 |
+
plt.savefig(path)
|
70 |
+
graph_paths.append(path)
|
71 |
+
|
72 |
+
return graph_paths
|
73 |
+
|
74 |
+
|
75 |
+
@app.route('/api/get_csv', methods=['GET'])
|
76 |
+
def get_csv():
|
77 |
+
try:
|
78 |
+
if not os.path.exists(CSV_FILE_PATH):
|
79 |
+
return jsonify({"error": "CSV file not found"}), 404
|
80 |
+
with open(CSV_FILE_PATH, "r", encoding="utf-8") as f:
|
81 |
+
return f.read(), 200, {
|
82 |
+
"Content-Type": "text/csv",
|
83 |
+
"Content-Disposition": "inline; filename=dataset.csv"
|
84 |
+
}
|
85 |
+
except Exception as e:
|
86 |
+
return jsonify({"error": str(e)}), 500
|
87 |
+
|
88 |
+
|
89 |
+
@app.route('/api/download_csv', methods=['GET'])
|
90 |
+
def download_csv():
|
91 |
+
return send_file(CSV_FILE_PATH, as_attachment=True)
|
92 |
+
|
93 |
+
|
94 |
+
@app.route('/api/get_graphs', methods=['GET'])
|
95 |
+
def get_graphs():
|
96 |
+
paths = generate_graphs_from_csv(CSV_FILE_PATH, GRAPH_DIR)
|
97 |
+
return jsonify({"graphs": [p.replace("./static", "/static") for p in paths]})
|
98 |
+
|
99 |
+
if __name__ == '__main__':
|
100 |
+
app.run(host="0.0.0.0", port=7860)
|
requirements.txt
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn
|
3 |
+
numpy
|
4 |
+
pandas
|
5 |
+
spacy
|
6 |
+
keras
|
7 |
+
tensorflow
|
8 |
+
scikit-learn
|
9 |
+
en-core-web-lg @ https://github.com/explosion/spacy-models/releases/download/en_core_web_lg-3.8.0/en_core_web_lg-3.8.0.tar.gz
|
10 |
+
langchain_groq
|
11 |
+
langchain_core
|
12 |
+
selenium
|
13 |
+
openml
|
14 |
+
openai
|
15 |
+
rapidfuzz
|
16 |
+
matplotlib
|
17 |
+
seaborn
|
18 |
+
flask
|
19 |
+
google
|
20 |
+
datasets
|
21 |
+
kaggle
|
space.yaml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
runtime: docker
|
2 |
+
docker:
|
3 |
+
ports: 7860
|
4 |
+
cmd: ["flask", "run", "--host=0.0.0.0", "--port=7860"]
|