{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "id": "MMHkv6MqYL0z" }, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "_fdfg5W6YL00", "outputId": "89bc6702-c282-4f2f-88d8-f93b251ce00c" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\karlo\\AppData\\Local\\Temp\\ipykernel_11020\\3466840311.py:1: DtypeWarning: Columns (3,12,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,37,41,42,44) have mixed types. Specify dtype option on import or set low_memory=False.\n", " data_normal = pd.read_csv('.\\data\\для анализа\\dataset._normal.csv', delimiter=';')\n" ] } ], "source": [ "data_normal = pd.read_csv('.\\data\\для анализа\\dataset._normal.csv', delimiter=';')\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "yf308r_QYL00" }, "outputs": [], "source": [ "data_normal[\"Рабочий\"] = 1" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "eE6kVD4YYL01", "outputId": "fd86ce39-d7a1-46f4-ddfd-645b99d665d7" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Дата и времяПолож.пед.акселер.,%Нагрузка на двигатель, %Давл.масла двиг.,кПаТемп.масла двиг.,°СОбор.двиг.,об/минЗначение счетчика моточасов, час:минСост.пед.сцепл.iButton2КПП. Температура масла...Холодный старт (spn3871)Крутящий момент (spn513), НмПоложение рейки ТНВД (spn51), %Расход топлива (spn183), л/чДВС. Температура наддувочного воздуха, °СДавление наддувочного воздуха двигателя (spn106), кПаТекущая передача (spn523)Температура масла гидравлики (spn5536), СПедаль слива (spn598)Рабочий
001/06/2023 00:28:27-------NaN-...---------1
101/06/2023 01:29:33-------NaN-...---------1
201/06/2023 01:29:45-------NaN-...---------1
301/06/2023 04:46:32-------NaN-...---------1
401/06/2023 04:47:01-------NaN-...---------1
..................................................................
89287831/05/2023 04:03:37-------NaN-...---------1
89287931/05/2023 07:06:50-------NaN-...---------1
89288031/05/2023 06:05:47-------NaN-...---------1
89288131/05/2023 08:07:59-------NaN-...---------1
89288231/05/2023 08:07:52-------NaN-...---------1
\n", "

892883 rows × 56 columns

\n", "
" ], "text/plain": [ " Дата и время Полож.пед.акселер.,% Нагрузка на двигатель, % \\\n", "0 01/06/2023 00:28:27 - - \n", "1 01/06/2023 01:29:33 - - \n", "2 01/06/2023 01:29:45 - - \n", "3 01/06/2023 04:46:32 - - \n", "4 01/06/2023 04:47:01 - - \n", "... ... ... ... \n", "892878 31/05/2023 04:03:37 - - \n", "892879 31/05/2023 07:06:50 - - \n", "892880 31/05/2023 06:05:47 - - \n", "892881 31/05/2023 08:07:59 - - \n", "892882 31/05/2023 08:07:52 - - \n", "\n", " Давл.масла двиг.,кПа Темп.масла двиг.,°С Обор.двиг.,об/мин \\\n", "0 - - - \n", "1 - - - \n", "2 - - - \n", "3 - - - \n", "4 - - - \n", "... ... ... ... \n", "892878 - - - \n", "892879 - - - \n", "892880 - - - \n", "892881 - - - \n", "892882 - - - \n", "\n", " Значение счетчика моточасов, час:мин Сост.пед.сцепл. iButton2 \\\n", "0 - - NaN \n", "1 - - NaN \n", "2 - - NaN \n", "3 - - NaN \n", "4 - - NaN \n", "... ... ... ... \n", "892878 - - NaN \n", "892879 - - NaN \n", "892880 - - NaN \n", "892881 - - NaN \n", "892882 - - NaN \n", "\n", " КПП. Температура масла ... Холодный старт (spn3871) \\\n", "0 - ... - \n", "1 - ... - \n", "2 - ... - \n", "3 - ... - \n", "4 - ... - \n", "... ... ... ... \n", "892878 - ... - \n", "892879 - ... - \n", "892880 - ... - \n", "892881 - ... - \n", "892882 - ... - \n", "\n", " Крутящий момент (spn513), Нм Положение рейки ТНВД (spn51), % \\\n", "0 - - \n", "1 - - \n", "2 - - \n", "3 - - \n", "4 - - \n", "... ... ... \n", "892878 - - \n", "892879 - - \n", "892880 - - \n", "892881 - - \n", "892882 - - \n", "\n", " Расход топлива (spn183), л/ч ДВС. Температура наддувочного воздуха, °С \\\n", "0 - - \n", "1 - - \n", "2 - - \n", "3 - - \n", "4 - - \n", "... ... ... \n", "892878 - - \n", "892879 - - \n", "892880 - - \n", "892881 - - \n", "892882 - - \n", "\n", " Давление наддувочного воздуха двигателя (spn106), кПа \\\n", "0 - \n", "1 - \n", "2 - \n", "3 - \n", "4 - \n", "... ... \n", "892878 - \n", "892879 - \n", "892880 - \n", "892881 - \n", "892882 - \n", "\n", " Текущая передача (spn523) Температура масла гидравлики (spn5536), С \\\n", "0 - - \n", "1 - - \n", "2 - - \n", "3 - - \n", "4 - - \n", "... ... ... \n", "892878 - - \n", "892879 - - \n", "892880 - - \n", "892881 - - \n", "892882 - - \n", "\n", " Педаль слива (spn598) Рабочий \n", "0 - 1 \n", "1 - 1 \n", "2 - 1 \n", "3 - 1 \n", "4 - 1 \n", "... ... ... \n", "892878 - 1 \n", "892879 - 1 \n", "892880 - 1 \n", "892881 - 1 \n", "892882 - 1 \n", "\n", "[892883 rows x 56 columns]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data_normal" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "AaQx6Y0-YL01", "outputId": "8ca282bf-049b-453a-9ee9-4f80de9f8d7d" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\karlo\\AppData\\Local\\Temp\\ipykernel_11020\\1794124453.py:1: DtypeWarning: Columns (3,11,12,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,37,41,42,44) have mixed types. Specify dtype option on import or set low_memory=False.\n", " data_problem = pd.read_csv('data\\для анализа\\dataset._problems.csv', delimiter=';')\n" ] } ], "source": [ "data_problem = pd.read_csv('data\\для анализа\\dataset._problems.csv', delimiter=';')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "An-OsTK3YL01" }, "outputs": [], "source": [ "data_problem[\"Рабочий\"] = 2" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "d8PUMiRVYL01", "outputId": "e0717c9d-7fc8-4bce-81b0-59de2d89bfc2" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Дата и времяПолож.пед.акселер.,%Нагрузка на двигатель, %Давл.масла двиг.,кПаТемп.масла двиг.,°СОбор.двиг.,об/минЗначение счетчика моточасов, час:минСост.пед.сцепл.iButton2КПП. Температура масла...Холодный старт (spn3871)Крутящий момент (spn513), НмПоложение рейки ТНВД (spn51), %Расход топлива (spn183), л/чДВС. Температура наддувочного воздуха, °СДавление наддувочного воздуха двигателя (spn106), кПаТекущая передача (spn523)Температура масла гидравлики (spn5536), СПедаль слива (spn598)Рабочий
001/08/2023 11:45:47-------NaN-...---------2
101/08/2023 11:46:01-------NaN-...---------2
201/08/2023 12:23:43-------NaN-...---------2
301/08/2023 12:23:57-------NaN-...---------2
401/08/2023 12:36:35-------NaN-...---------2
..................................................................
226320224/08/2023 11:46:040,0-528-273,0001885,500-Отпущ.NaN-...---------2
226320324/08/2023 11:46:030,0-528-273,0001893,000-Отпущ.NaN-...---------2
226320424/08/2023 11:46:020,0-528-273,0001891,500-Отпущ.NaN-...---------2
226320524/08/2023 11:46:010,0-528-273,0001916,2501380:24Отпущ.NaN-...---------2
226320624/08/2023 11:46:000,0-528-273,0001900,750-Отпущ.NaN-...---------2
\n", "

2263207 rows × 56 columns

\n", "
" ], "text/plain": [ " Дата и время Полож.пед.акселер.,% Нагрузка на двигатель, % \\\n", "0 01/08/2023 11:45:47 - - \n", "1 01/08/2023 11:46:01 - - \n", "2 01/08/2023 12:23:43 - - \n", "3 01/08/2023 12:23:57 - - \n", "4 01/08/2023 12:36:35 - - \n", "... ... ... ... \n", "2263202 24/08/2023 11:46:04 0,0 - \n", "2263203 24/08/2023 11:46:03 0,0 - \n", "2263204 24/08/2023 11:46:02 0,0 - \n", "2263205 24/08/2023 11:46:01 0,0 - \n", "2263206 24/08/2023 11:46:00 0,0 - \n", "\n", " Давл.масла двиг.,кПа Темп.масла двиг.,°С Обор.двиг.,об/мин \\\n", "0 - - - \n", "1 - - - \n", "2 - - - \n", "3 - - - \n", "4 - - - \n", "... ... ... ... \n", "2263202 528 -273,000 1885,500 \n", "2263203 528 -273,000 1893,000 \n", "2263204 528 -273,000 1891,500 \n", "2263205 528 -273,000 1916,250 \n", "2263206 528 -273,000 1900,750 \n", "\n", " Значение счетчика моточасов, час:мин Сост.пед.сцепл. iButton2 \\\n", "0 - - NaN \n", "1 - - NaN \n", "2 - - NaN \n", "3 - - NaN \n", "4 - - NaN \n", "... ... ... ... \n", "2263202 - Отпущ. NaN \n", "2263203 - Отпущ. NaN \n", "2263204 - Отпущ. NaN \n", "2263205 1380:24 Отпущ. NaN \n", "2263206 - Отпущ. NaN \n", "\n", " КПП. Температура масла ... Холодный старт (spn3871) \\\n", "0 - ... - \n", "1 - ... - \n", "2 - ... - \n", "3 - ... - \n", "4 - ... - \n", "... ... ... ... \n", "2263202 - ... - \n", "2263203 - ... - \n", "2263204 - ... - \n", "2263205 - ... - \n", "2263206 - ... - \n", "\n", " Крутящий момент (spn513), Нм Положение рейки ТНВД (spn51), % \\\n", "0 - - \n", "1 - - \n", "2 - - \n", "3 - - \n", "4 - - \n", "... ... ... \n", "2263202 - - \n", "2263203 - - \n", "2263204 - - \n", "2263205 - - \n", "2263206 - - \n", "\n", " Расход топлива (spn183), л/ч \\\n", "0 - \n", "1 - \n", "2 - \n", "3 - \n", "4 - \n", "... ... \n", "2263202 - \n", "2263203 - \n", "2263204 - \n", "2263205 - \n", "2263206 - \n", "\n", " ДВС. Температура наддувочного воздуха, °С \\\n", "0 - \n", "1 - \n", "2 - \n", "3 - \n", "4 - \n", "... ... \n", "2263202 - \n", "2263203 - \n", "2263204 - \n", "2263205 - \n", "2263206 - \n", "\n", " Давление наддувочного воздуха двигателя (spn106), кПа \\\n", "0 - \n", "1 - \n", "2 - \n", "3 - \n", "4 - \n", "... ... \n", "2263202 - \n", "2263203 - \n", "2263204 - \n", "2263205 - \n", "2263206 - \n", "\n", " Текущая передача (spn523) Температура масла гидравлики (spn5536), С \\\n", "0 - - \n", "1 - - \n", "2 - - \n", "3 - - \n", "4 - - \n", "... ... ... \n", "2263202 - - \n", "2263203 - - \n", "2263204 - - \n", "2263205 - - \n", "2263206 - - \n", "\n", " Педаль слива (spn598) Рабочий \n", "0 - 2 \n", "1 - 2 \n", "2 - 2 \n", "3 - 2 \n", "4 - 2 \n", "... ... ... \n", "2263202 - 2 \n", "2263203 - 2 \n", "2263204 - 2 \n", "2263205 - 2 \n", "2263206 - 2 \n", "\n", "[2263207 rows x 56 columns]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data_problem" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Oi_b9K0FYL01" }, "outputs": [], "source": [ "combinet = pd.concat([data_normal, data_problem])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "I9AzhQ83YL01", "outputId": "62b84d5e-4232-456f-e1a3-ca9836e32404" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Дата и времяПолож.пед.акселер.,%Нагрузка на двигатель, %Давл.масла двиг.,кПаТемп.масла двиг.,°СОбор.двиг.,об/минЗначение счетчика моточасов, час:минСост.пед.сцепл.iButton2КПП. Температура масла...Холодный старт (spn3871)Крутящий момент (spn513), НмПоложение рейки ТНВД (spn51), %Расход топлива (spn183), л/чДВС. Температура наддувочного воздуха, °СДавление наддувочного воздуха двигателя (spn106), кПаТекущая передача (spn523)Температура масла гидравлики (spn5536), СПедаль слива (spn598)Рабочий
001/06/2023 00:28:27-------NaN-...---------1
101/06/2023 01:29:33-------NaN-...---------1
201/06/2023 01:29:45-------NaN-...---------1
301/06/2023 04:46:32-------NaN-...---------1
401/06/2023 04:47:01-------NaN-...---------1
..................................................................
226320224/08/2023 11:46:040,0-528-273,0001885,500-Отпущ.NaN-...---------2
226320324/08/2023 11:46:030,0-528-273,0001893,000-Отпущ.NaN-...---------2
226320424/08/2023 11:46:020,0-528-273,0001891,500-Отпущ.NaN-...---------2
226320524/08/2023 11:46:010,0-528-273,0001916,2501380:24Отпущ.NaN-...---------2
226320624/08/2023 11:46:000,0-528-273,0001900,750-Отпущ.NaN-...---------2
\n", "

3156090 rows × 56 columns

\n", "
" ], "text/plain": [ " Дата и время Полож.пед.акселер.,% Нагрузка на двигатель, % \\\n", "0 01/06/2023 00:28:27 - - \n", "1 01/06/2023 01:29:33 - - \n", "2 01/06/2023 01:29:45 - - \n", "3 01/06/2023 04:46:32 - - \n", "4 01/06/2023 04:47:01 - - \n", "... ... ... ... \n", "2263202 24/08/2023 11:46:04 0,0 - \n", "2263203 24/08/2023 11:46:03 0,0 - \n", "2263204 24/08/2023 11:46:02 0,0 - \n", "2263205 24/08/2023 11:46:01 0,0 - \n", "2263206 24/08/2023 11:46:00 0,0 - \n", "\n", " Давл.масла двиг.,кПа Темп.масла двиг.,°С Обор.двиг.,об/мин \\\n", "0 - - - \n", "1 - - - \n", "2 - - - \n", "3 - - - \n", "4 - - - \n", "... ... ... ... \n", "2263202 528 -273,000 1885,500 \n", "2263203 528 -273,000 1893,000 \n", "2263204 528 -273,000 1891,500 \n", "2263205 528 -273,000 1916,250 \n", "2263206 528 -273,000 1900,750 \n", "\n", " Значение счетчика моточасов, час:мин Сост.пед.сцепл. iButton2 \\\n", "0 - - NaN \n", "1 - - NaN \n", "2 - - NaN \n", "3 - - NaN \n", "4 - - NaN \n", "... ... ... ... \n", "2263202 - Отпущ. NaN \n", "2263203 - Отпущ. NaN \n", "2263204 - Отпущ. NaN \n", "2263205 1380:24 Отпущ. NaN \n", "2263206 - Отпущ. NaN \n", "\n", " КПП. Температура масла ... Холодный старт (spn3871) \\\n", "0 - ... - \n", "1 - ... - \n", "2 - ... - \n", "3 - ... - \n", "4 - ... - \n", "... ... ... ... \n", "2263202 - ... - \n", "2263203 - ... - \n", "2263204 - ... - \n", "2263205 - ... - \n", "2263206 - ... - \n", "\n", " Крутящий момент (spn513), Нм Положение рейки ТНВД (spn51), % \\\n", "0 - - \n", "1 - - \n", "2 - - \n", "3 - - \n", "4 - - \n", "... ... ... \n", "2263202 - - \n", "2263203 - - \n", "2263204 - - \n", "2263205 - - \n", "2263206 - - \n", "\n", " Расход топлива (spn183), л/ч \\\n", "0 - \n", "1 - \n", "2 - \n", "3 - \n", "4 - \n", "... ... \n", "2263202 - \n", "2263203 - \n", "2263204 - \n", "2263205 - \n", "2263206 - \n", "\n", " ДВС. Температура наддувочного воздуха, °С \\\n", "0 - \n", "1 - \n", "2 - \n", "3 - \n", "4 - \n", "... ... \n", "2263202 - \n", "2263203 - \n", "2263204 - \n", "2263205 - \n", "2263206 - \n", "\n", " Давление наддувочного воздуха двигателя (spn106), кПа \\\n", "0 - \n", "1 - \n", "2 - \n", "3 - \n", "4 - \n", "... ... \n", "2263202 - \n", "2263203 - \n", "2263204 - \n", "2263205 - \n", "2263206 - \n", "\n", " Текущая передача (spn523) Температура масла гидравлики (spn5536), С \\\n", "0 - - \n", "1 - - \n", "2 - - \n", "3 - - \n", "4 - - \n", "... ... ... \n", "2263202 - - \n", "2263203 - - \n", "2263204 - - \n", "2263205 - - \n", "2263206 - - \n", "\n", " Педаль слива (spn598) Рабочий \n", "0 - 1 \n", "1 - 1 \n", "2 - 1 \n", "3 - 1 \n", "4 - 1 \n", "... ... ... \n", "2263202 - 2 \n", "2263203 - 2 \n", "2263204 - 2 \n", "2263205 - 2 \n", "2263206 - 2 \n", "\n", "[3156090 rows x 56 columns]" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "combinet" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "aTmLbAOiYL02" }, "outputs": [], "source": [ "data_anomal = pd.read_csv('data\\для анализа\\dataset._anomaly.csv', delimiter=';')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "c85Gf3pQYL02" }, "outputs": [], "source": [ "data_anomal['Рабочий'] = 3" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "C-UEjNqOYL02" }, "outputs": [], "source": [ "combinet = pd.concat([combinet, data_anomal])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "277vcotkYL02" }, "outputs": [], "source": [ "combinet = combinet" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "0StXVeb9YL02", "outputId": "ec6e9e71-cccd-4758-c1e8-4bf685fcbc84" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\karlo\\AppData\\Local\\Temp\\ipykernel_11020\\413649503.py:1: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", " combinet = combinet.replace(r'^\\s*-', np.nan, regex=True)\n" ] } ], "source": [ "combinet = combinet.replace(r'^\\s*-', np.nan, regex=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "ucEYlnJ1YL03", "outputId": "c1a078ff-c65a-49b7-eea4-88e2e4a7e394" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Дата и времяПолож.пед.акселер.,%Нагрузка на двигатель, %Давл.масла двиг.,кПаТемп.масла двиг.,°СОбор.двиг.,об/минЗначение счетчика моточасов, час:минСост.пед.сцепл.iButton2КПП. Температура масла...Холодный старт (spn3871)Крутящий момент (spn513), НмПоложение рейки ТНВД (spn51), %Расход топлива (spn183), л/чДВС. Температура наддувочного воздуха, °СДавление наддувочного воздуха двигателя (spn106), кПаТекущая передача (spn523)Температура масла гидравлики (spn5536), СПедаль слива (spn598)Рабочий
001/06/2023 00:28:27NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN1
101/06/2023 01:29:33NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN1
201/06/2023 01:29:45NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN1
301/06/2023 04:46:32NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN1
401/06/2023 04:47:01NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN1
..................................................................
18969918/05/2023 23:56:408,0NaN45863350,000168:36Отпущ.NaN-238.0...0NaNNaNNaNNaNNaNNaNNaNNaN3
18970018/05/2023 23:57:1082,0NaN9411052778,000168:36Отпущ.NaN-171.0...0NaNNaNNaNNaNNaNNaNNaNNaN3
18970118/05/2023 23:57:3610,0NaN11871822518,000168:36Отпущ.NaN-197.0...0NaNNaNNaNNaNNaNNaNNaNNaN3
18970218/05/2023 23:58:0622,0NaN1199651291,000168:36Отпущ.NaN-61.0...0NaNNaNNaNNaNNaNNaNNaNNaN3
18970318/05/2023 23:58:3655,0NaN7511814770,000168:36Отпущ.NaN-12.0...0NaNNaNNaNNaNNaNNaNNaNNaN3
\n", "

3345794 rows × 56 columns

\n", "
" ], "text/plain": [ " Дата и время Полож.пед.акселер.,% Нагрузка на двигатель, % \\\n", "0 01/06/2023 00:28:27 NaN NaN \n", "1 01/06/2023 01:29:33 NaN NaN \n", "2 01/06/2023 01:29:45 NaN NaN \n", "3 01/06/2023 04:46:32 NaN NaN \n", "4 01/06/2023 04:47:01 NaN NaN \n", "... ... ... ... \n", "189699 18/05/2023 23:56:40 8,0 NaN \n", "189700 18/05/2023 23:57:10 82,0 NaN \n", "189701 18/05/2023 23:57:36 10,0 NaN \n", "189702 18/05/2023 23:58:06 22,0 NaN \n", "189703 18/05/2023 23:58:36 55,0 NaN \n", "\n", " Давл.масла двиг.,кПа Темп.масла двиг.,°С Обор.двиг.,об/мин \\\n", "0 NaN NaN NaN \n", "1 NaN NaN NaN \n", "2 NaN NaN NaN \n", "3 NaN NaN NaN \n", "4 NaN NaN NaN \n", "... ... ... ... \n", "189699 458 6 3350,000 \n", "189700 941 105 2778,000 \n", "189701 1187 182 2518,000 \n", "189702 1199 65 1291,000 \n", "189703 751 181 4770,000 \n", "\n", " Значение счетчика моточасов, час:мин Сост.пед.сцепл. iButton2 \\\n", "0 NaN NaN NaN \n", "1 NaN NaN NaN \n", "2 NaN NaN NaN \n", "3 NaN NaN NaN \n", "4 NaN NaN NaN \n", "... ... ... ... \n", "189699 168:36 Отпущ. NaN \n", "189700 168:36 Отпущ. NaN \n", "189701 168:36 Отпущ. NaN \n", "189702 168:36 Отпущ. NaN \n", "189703 168:36 Отпущ. NaN \n", "\n", " КПП. Температура масла ... Холодный старт (spn3871) \\\n", "0 NaN ... NaN \n", "1 NaN ... NaN \n", "2 NaN ... NaN \n", "3 NaN ... NaN \n", "4 NaN ... NaN \n", "... ... ... ... \n", "189699 -238.0 ... 0 \n", "189700 -171.0 ... 0 \n", "189701 -197.0 ... 0 \n", "189702 -61.0 ... 0 \n", "189703 -12.0 ... 0 \n", "\n", " Крутящий момент (spn513), Нм Положение рейки ТНВД (spn51), % \\\n", "0 NaN NaN \n", "1 NaN NaN \n", "2 NaN NaN \n", "3 NaN NaN \n", "4 NaN NaN \n", "... ... ... \n", "189699 NaN NaN \n", "189700 NaN NaN \n", "189701 NaN NaN \n", "189702 NaN NaN \n", "189703 NaN NaN \n", "\n", " Расход топлива (spn183), л/ч ДВС. Температура наддувочного воздуха, °С \\\n", "0 NaN NaN \n", "1 NaN NaN \n", "2 NaN NaN \n", "3 NaN NaN \n", "4 NaN NaN \n", "... ... ... \n", "189699 NaN NaN \n", "189700 NaN NaN \n", "189701 NaN NaN \n", "189702 NaN NaN \n", "189703 NaN NaN \n", "\n", " Давление наддувочного воздуха двигателя (spn106), кПа \\\n", "0 NaN \n", "1 NaN \n", "2 NaN \n", "3 NaN \n", "4 NaN \n", "... ... \n", "189699 NaN \n", "189700 NaN \n", "189701 NaN \n", "189702 NaN \n", "189703 NaN \n", "\n", " Текущая передача (spn523) Температура масла гидравлики (spn5536), С \\\n", "0 NaN NaN \n", "1 NaN NaN \n", "2 NaN NaN \n", "3 NaN NaN \n", "4 NaN NaN \n", "... ... ... \n", "189699 NaN NaN \n", "189700 NaN NaN \n", "189701 NaN NaN \n", "189702 NaN NaN \n", "189703 NaN NaN \n", "\n", " Педаль слива (spn598) Рабочий \n", "0 NaN 1 \n", "1 NaN 1 \n", "2 NaN 1 \n", "3 NaN 1 \n", "4 NaN 1 \n", "... ... ... \n", "189699 NaN 3 \n", "189700 NaN 3 \n", "189701 NaN 3 \n", "189702 NaN 3 \n", "189703 NaN 3 \n", "\n", "[3345794 rows x 56 columns]" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "combinet" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "bNh3_0MYYL03" }, "outputs": [], "source": [ "combinet = combinet[combinet.iloc[:, 1:-1].notna().any(axis=1)]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "AjEiYPwhYL03", "outputId": "334350cf-26f3-42bf-ddd7-620407d4fe23" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Дата и времяПолож.пед.акселер.,%Нагрузка на двигатель, %Давл.масла двиг.,кПаТемп.масла двиг.,°СОбор.двиг.,об/минЗначение счетчика моточасов, час:минСост.пед.сцепл.iButton2КПП. Температура масла...Холодный старт (spn3871)Крутящий момент (spn513), НмПоложение рейки ТНВД (spn51), %Расход топлива (spn183), л/чДВС. Температура наддувочного воздуха, °СДавление наддувочного воздуха двигателя (spn106), кПаТекущая передача (spn523)Температура масла гидравлики (spn5536), СПедаль слива (spn598)Рабочий
38401/06/2023 07:57:010,0NaN0NaN0,000NaNОтпущ.NaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN1
38601/06/2023 07:57:310,0NaN380NaN649,000422:24Отпущ.NaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN1
38701/06/2023 07:58:010,0NaN360NaN651,000422:24Отпущ.NaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN1
38801/06/2023 07:58:310,0NaN348NaN656,000422:24Отпущ.NaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN1
38901/06/2023 07:59:010,0NaN360NaN671,875422:24Отпущ.NaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN1
..................................................................
18969918/05/2023 23:56:408,0NaN45863350,000168:36Отпущ.NaN-238.0...0NaNNaNNaNNaNNaNNaNNaNNaN3
18970018/05/2023 23:57:1082,0NaN9411052778,000168:36Отпущ.NaN-171.0...0NaNNaNNaNNaNNaNNaNNaNNaN3
18970118/05/2023 23:57:3610,0NaN11871822518,000168:36Отпущ.NaN-197.0...0NaNNaNNaNNaNNaNNaNNaNNaN3
18970218/05/2023 23:58:0622,0NaN1199651291,000168:36Отпущ.NaN-61.0...0NaNNaNNaNNaNNaNNaNNaNNaN3
18970318/05/2023 23:58:3655,0NaN7511814770,000168:36Отпущ.NaN-12.0...0NaNNaNNaNNaNNaNNaNNaNNaN3
\n", "

2856643 rows × 56 columns

\n", "
" ], "text/plain": [ " Дата и время Полож.пед.акселер.,% Нагрузка на двигатель, % \\\n", "384 01/06/2023 07:57:01 0,0 NaN \n", "386 01/06/2023 07:57:31 0,0 NaN \n", "387 01/06/2023 07:58:01 0,0 NaN \n", "388 01/06/2023 07:58:31 0,0 NaN \n", "389 01/06/2023 07:59:01 0,0 NaN \n", "... ... ... ... \n", "189699 18/05/2023 23:56:40 8,0 NaN \n", "189700 18/05/2023 23:57:10 82,0 NaN \n", "189701 18/05/2023 23:57:36 10,0 NaN \n", "189702 18/05/2023 23:58:06 22,0 NaN \n", "189703 18/05/2023 23:58:36 55,0 NaN \n", "\n", " Давл.масла двиг.,кПа Темп.масла двиг.,°С Обор.двиг.,об/мин \\\n", "384 0 NaN 0,000 \n", "386 380 NaN 649,000 \n", "387 360 NaN 651,000 \n", "388 348 NaN 656,000 \n", "389 360 NaN 671,875 \n", "... ... ... ... \n", "189699 458 6 3350,000 \n", "189700 941 105 2778,000 \n", "189701 1187 182 2518,000 \n", "189702 1199 65 1291,000 \n", "189703 751 181 4770,000 \n", "\n", " Значение счетчика моточасов, час:мин Сост.пед.сцепл. iButton2 \\\n", "384 NaN Отпущ. NaN \n", "386 422:24 Отпущ. NaN \n", "387 422:24 Отпущ. NaN \n", "388 422:24 Отпущ. NaN \n", "389 422:24 Отпущ. NaN \n", "... ... ... ... \n", "189699 168:36 Отпущ. NaN \n", "189700 168:36 Отпущ. NaN \n", "189701 168:36 Отпущ. NaN \n", "189702 168:36 Отпущ. NaN \n", "189703 168:36 Отпущ. NaN \n", "\n", " КПП. Температура масла ... Холодный старт (spn3871) \\\n", "384 NaN ... NaN \n", "386 NaN ... NaN \n", "387 NaN ... NaN \n", "388 NaN ... NaN \n", "389 NaN ... NaN \n", "... ... ... ... \n", "189699 -238.0 ... 0 \n", "189700 -171.0 ... 0 \n", "189701 -197.0 ... 0 \n", "189702 -61.0 ... 0 \n", "189703 -12.0 ... 0 \n", "\n", " Крутящий момент (spn513), Нм Положение рейки ТНВД (spn51), % \\\n", "384 NaN NaN \n", "386 NaN NaN \n", "387 NaN NaN \n", "388 NaN NaN \n", "389 NaN NaN \n", "... ... ... \n", "189699 NaN NaN \n", "189700 NaN NaN \n", "189701 NaN NaN \n", "189702 NaN NaN \n", "189703 NaN NaN \n", "\n", " Расход топлива (spn183), л/ч ДВС. Температура наддувочного воздуха, °С \\\n", "384 NaN NaN \n", "386 NaN NaN \n", "387 NaN NaN \n", "388 NaN NaN \n", "389 NaN NaN \n", "... ... ... \n", "189699 NaN NaN \n", "189700 NaN NaN \n", "189701 NaN NaN \n", "189702 NaN NaN \n", "189703 NaN NaN \n", "\n", " Давление наддувочного воздуха двигателя (spn106), кПа \\\n", "384 NaN \n", "386 NaN \n", "387 NaN \n", "388 NaN \n", "389 NaN \n", "... ... \n", "189699 NaN \n", "189700 NaN \n", "189701 NaN \n", "189702 NaN \n", "189703 NaN \n", "\n", " Текущая передача (spn523) Температура масла гидравлики (spn5536), С \\\n", "384 NaN NaN \n", "386 NaN NaN \n", "387 NaN NaN \n", "388 NaN NaN \n", "389 NaN NaN \n", "... ... ... \n", "189699 NaN NaN \n", "189700 NaN NaN \n", "189701 NaN NaN \n", "189702 NaN NaN \n", "189703 NaN NaN \n", "\n", " Педаль слива (spn598) Рабочий \n", "384 NaN 1 \n", "386 NaN 1 \n", "387 NaN 1 \n", "388 NaN 1 \n", "389 NaN 1 \n", "... ... ... \n", "189699 NaN 3 \n", "189700 NaN 3 \n", "189701 NaN 3 \n", "189702 NaN 3 \n", "189703 NaN 3 \n", "\n", "[2856643 rows x 56 columns]" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "combinet" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "aAPZWdyFYL03" }, "outputs": [], "source": [ "#drop index\n", "combinet.reset_index(drop=True, inplace=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "uUdBecjBYL03", "outputId": "ed481571-0fac-40ba-a538-3b842d73e0e6" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\karlo\\AppData\\Local\\Temp\\ipykernel_11020\\3210479092.py:1: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " combinet.drop_duplicates(inplace=True)\n" ] } ], "source": [ "combinet.drop_duplicates(inplace=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "kXnjtjFwYL03", "outputId": "e358cc79-6223-4f87-d02b-0843719ca74b" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Дата и времяПолож.пед.акселер.,%Нагрузка на двигатель, %Давл.масла двиг.,кПаТемп.масла двиг.,°СОбор.двиг.,об/минЗначение счетчика моточасов, час:минСост.пед.сцепл.iButton2КПП. Температура масла...Холодный старт (spn3871)Крутящий момент (spn513), НмПоложение рейки ТНВД (spn51), %Расход топлива (spn183), л/чДВС. Температура наддувочного воздуха, °СДавление наддувочного воздуха двигателя (spn106), кПаТекущая передача (spn523)Температура масла гидравлики (spn5536), СПедаль слива (spn598)Рабочий
001/06/2023 07:57:010,0NaN0NaN0,000NaNОтпущ.NaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN1
101/06/2023 07:57:310,0NaN380NaN649,000422:24Отпущ.NaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN1
201/06/2023 07:58:010,0NaN360NaN651,000422:24Отпущ.NaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN1
301/06/2023 07:58:310,0NaN348NaN656,000422:24Отпущ.NaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN1
401/06/2023 07:59:010,0NaN360NaN671,875422:24Отпущ.NaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaN1
..................................................................
285663818/05/2023 23:56:408,0NaN45863350,000168:36Отпущ.NaN-238.0...0NaNNaNNaNNaNNaNNaNNaNNaN3
285663918/05/2023 23:57:1082,0NaN9411052778,000168:36Отпущ.NaN-171.0...0NaNNaNNaNNaNNaNNaNNaNNaN3
285664018/05/2023 23:57:3610,0NaN11871822518,000168:36Отпущ.NaN-197.0...0NaNNaNNaNNaNNaNNaNNaNNaN3
285664118/05/2023 23:58:0622,0NaN1199651291,000168:36Отпущ.NaN-61.0...0NaNNaNNaNNaNNaNNaNNaNNaN3
285664218/05/2023 23:58:3655,0NaN7511814770,000168:36Отпущ.NaN-12.0...0NaNNaNNaNNaNNaNNaNNaNNaN3
\n", "

2834231 rows × 56 columns

\n", "
" ], "text/plain": [ " Дата и время Полож.пед.акселер.,% Нагрузка на двигатель, % \\\n", "0 01/06/2023 07:57:01 0,0 NaN \n", "1 01/06/2023 07:57:31 0,0 NaN \n", "2 01/06/2023 07:58:01 0,0 NaN \n", "3 01/06/2023 07:58:31 0,0 NaN \n", "4 01/06/2023 07:59:01 0,0 NaN \n", "... ... ... ... \n", "2856638 18/05/2023 23:56:40 8,0 NaN \n", "2856639 18/05/2023 23:57:10 82,0 NaN \n", "2856640 18/05/2023 23:57:36 10,0 NaN \n", "2856641 18/05/2023 23:58:06 22,0 NaN \n", "2856642 18/05/2023 23:58:36 55,0 NaN \n", "\n", " Давл.масла двиг.,кПа Темп.масла двиг.,°С Обор.двиг.,об/мин \\\n", "0 0 NaN 0,000 \n", "1 380 NaN 649,000 \n", "2 360 NaN 651,000 \n", "3 348 NaN 656,000 \n", "4 360 NaN 671,875 \n", "... ... ... ... \n", "2856638 458 6 3350,000 \n", "2856639 941 105 2778,000 \n", "2856640 1187 182 2518,000 \n", "2856641 1199 65 1291,000 \n", "2856642 751 181 4770,000 \n", "\n", " Значение счетчика моточасов, час:мин Сост.пед.сцепл. iButton2 \\\n", "0 NaN Отпущ. NaN \n", "1 422:24 Отпущ. NaN \n", "2 422:24 Отпущ. NaN \n", "3 422:24 Отпущ. NaN \n", "4 422:24 Отпущ. NaN \n", "... ... ... ... \n", "2856638 168:36 Отпущ. NaN \n", "2856639 168:36 Отпущ. NaN \n", "2856640 168:36 Отпущ. NaN \n", "2856641 168:36 Отпущ. NaN \n", "2856642 168:36 Отпущ. NaN \n", "\n", " КПП. Температура масла ... Холодный старт (spn3871) \\\n", "0 NaN ... NaN \n", "1 NaN ... NaN \n", "2 NaN ... NaN \n", "3 NaN ... NaN \n", "4 NaN ... NaN \n", "... ... ... ... \n", "2856638 -238.0 ... 0 \n", "2856639 -171.0 ... 0 \n", "2856640 -197.0 ... 0 \n", "2856641 -61.0 ... 0 \n", "2856642 -12.0 ... 0 \n", "\n", " Крутящий момент (spn513), Нм Положение рейки ТНВД (spn51), % \\\n", "0 NaN NaN \n", "1 NaN NaN \n", "2 NaN NaN \n", "3 NaN NaN \n", "4 NaN NaN \n", "... ... ... \n", "2856638 NaN NaN \n", "2856639 NaN NaN \n", "2856640 NaN NaN \n", "2856641 NaN NaN \n", "2856642 NaN NaN \n", "\n", " Расход топлива (spn183), л/ч \\\n", "0 NaN \n", "1 NaN \n", "2 NaN \n", "3 NaN \n", "4 NaN \n", "... ... \n", "2856638 NaN \n", "2856639 NaN \n", "2856640 NaN \n", "2856641 NaN \n", "2856642 NaN \n", "\n", " ДВС. Температура наддувочного воздуха, °С \\\n", "0 NaN \n", "1 NaN \n", "2 NaN \n", "3 NaN \n", "4 NaN \n", "... ... \n", "2856638 NaN \n", "2856639 NaN \n", "2856640 NaN \n", "2856641 NaN \n", "2856642 NaN \n", "\n", " Давление наддувочного воздуха двигателя (spn106), кПа \\\n", "0 NaN \n", "1 NaN \n", "2 NaN \n", "3 NaN \n", "4 NaN \n", "... ... \n", "2856638 NaN \n", "2856639 NaN \n", "2856640 NaN \n", "2856641 NaN \n", "2856642 NaN \n", "\n", " Текущая передача (spn523) Температура масла гидравлики (spn5536), С \\\n", "0 NaN NaN \n", "1 NaN NaN \n", "2 NaN NaN \n", "3 NaN NaN \n", "4 NaN NaN \n", "... ... ... \n", "2856638 NaN NaN \n", "2856639 NaN NaN \n", "2856640 NaN NaN \n", "2856641 NaN NaN \n", "2856642 NaN NaN \n", "\n", " Педаль слива (spn598) Рабочий \n", "0 NaN 1 \n", "1 NaN 1 \n", "2 NaN 1 \n", "3 NaN 1 \n", "4 NaN 1 \n", "... ... ... \n", "2856638 NaN 3 \n", "2856639 NaN 3 \n", "2856640 NaN 3 \n", "2856641 NaN 3 \n", "2856642 NaN 3 \n", "\n", "[2834231 rows x 56 columns]" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "combinet" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "ZOegh2rYYL03" }, "outputs": [], "source": [ "combinet = combinet.drop(columns=['Дата и время', 'iButton2','Нагрузка на двигатель, %', 'Крутящий момент (spn513), Нм', 'Положение рейки ТНВД (spn51), %' , 'Расход топлива (spn183), л/ч', 'ДВС. Температура наддувочного воздуха, °С', 'Давление наддувочного воздуха двигателя (spn106), кПа', 'Текущая передача (spn523)', 'Температура масла гидравлики (spn5536), С', 'Педаль слива (spn598)'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Lr3K-P1OYL03" }, "outputs": [], "source": [ "combinet[\"Сост.пед.сцепл.\"] = combinet[\"Сост.пед.сцепл.\"].astype(bool)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "UZLpym0sYL03" }, "outputs": [], "source": [ "combinet['Обор.двиг.,об/мин'] = combinet['Обор.двиг.,об/мин'].str.replace(',', '.').astype(float)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "GWauhUWAYL04" }, "outputs": [], "source": [ "combinet['Значение счетчика моточасов, час:мин'] = combinet['Значение счетчика моточасов, час:мин'].str.replace(':', '').astype(float)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "id": "T7GWt_P7YL04" }, "outputs": [], "source": [ "combinet['Сост.пед.сцепл.'] = combinet['Сост.пед.сцепл.'].replace(',', '.').astype(float)\n", "combinet['Сост.пед.сцепл.'] = combinet['Сост.пед.сцепл.'].astype(str)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "CkRWTcQIYL04" }, "outputs": [], "source": [ "combinet['Полож.пед.акселер.,%'] = combinet['Полож.пед.акселер.,%'].str.replace(',', '.').astype(float)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "81zw6h8sYL04" }, "outputs": [], "source": [ "combinet['Темп.масла двиг.,°С'] = combinet['Темп.масла двиг.,°С'].str.replace(',', '.').astype(float)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "UWKl2pnAYL04" }, "outputs": [], "source": [ "combinet['КПП. Температура масла'] = combinet['КПП. Температура масла'].astype(float)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "DAPlGXPZYL04" }, "outputs": [], "source": [ "combinet.drop(['Нейтраль КПП (spn3843)', 'Стояночный тормоз (spn3842)', 'Аварийная температура охлаждающей жидкости (spn3841)', 'Засоренность воздушного фильтра (spn3840)', 'Засоренность фильтра КПП (spn3847)', 'Аварийное давление масла ДВС (spn3846)',\n", " 'Засоренность фильтра ДВС (spn3845)',\n", " 'Засоренность фильтра рулевого управления (spn3844)',\n", " 'Засоренность фильтра навесного оборудования (spn3851)',\n", " 'Недопустимый уровень масла в гидробаке (spn3850)',\n", " 'Аварийная температура масла в гидросистеме (spn3849)',\n", " 'Аварийное давление в I контуре тормозной системы (spn3848)',\n", " 'Аварийное давление в II контуре тормозной системы (spn3855)',\n", " 'Зарядка АКБ (spn3854)', 'Отопитель (spn3853)',\n", " 'Выход блока управления двигателем (spn3852)',\n", " 'Включение тормозков (spn3859)', 'Засоренность фильтра слива (spn3858)',\n", " 'Аварийное давление масла КПП (spn3857)',\n", " 'Аварийная температура масла ДВС(spn3856)',\n", " 'Неисправность тормозной системы (spn3863)', 'Термостарт (spn3862)',\n", " 'Разрешение запуска двигателя (spn3861)', 'Низкий уровень ОЖ (spn3860)',\n", " 'Аварийная температура масла ГТР (spn3867)',\n", " 'Необходимость сервисного обслуживания (spn3866)',\n", " 'Подогрев топливного фильтра (spn3865)', 'Вода в топливе (spn3864)',\n", " 'Холодный старт (spn3871)'], axis=1, inplace=True)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "id": "Nw3GKn5SYL04" }, "outputs": [], "source": [ "cat_cols =['Сост.пед.сцепл.']" ] }, { "cell_type": "code", "source": [ "!pip install ipympl" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "J81WqvgMajWz", "outputId": "5859b6e7-eec7-496e-ef71-06282df7eb53" }, "execution_count": 27, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Collecting ipympl\n", " Downloading ipympl-0.9.3-py2.py3-none-any.whl (511 kB)\n", "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/511.6 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m225.3/511.6 kB\u001b[0m \u001b[31m6.8 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m511.6/511.6 kB\u001b[0m \u001b[31m7.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: ipython<9 in /usr/local/lib/python3.10/dist-packages (from ipympl) (7.34.0)\n", "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from ipympl) (1.25.2)\n", "Requirement already satisfied: ipython-genutils in /usr/local/lib/python3.10/dist-packages (from ipympl) (0.2.0)\n", "Requirement already satisfied: pillow in /usr/local/lib/python3.10/dist-packages (from ipympl) (9.4.0)\n", "Requirement already satisfied: traitlets<6 in /usr/local/lib/python3.10/dist-packages (from ipympl) (5.7.1)\n", "Requirement already satisfied: ipywidgets<9,>=7.6.0 in /usr/local/lib/python3.10/dist-packages (from ipympl) (7.7.1)\n", "Requirement already satisfied: matplotlib<4,>=3.4.0 in /usr/local/lib/python3.10/dist-packages (from ipympl) (3.7.1)\n", "Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.10/dist-packages (from ipython<9->ipympl) (67.7.2)\n", "Collecting jedi>=0.16 (from ipython<9->ipympl)\n", " Downloading jedi-0.19.1-py2.py3-none-any.whl (1.6 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m16.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: decorator in /usr/local/lib/python3.10/dist-packages (from ipython<9->ipympl) (4.4.2)\n", "Requirement already satisfied: pickleshare in /usr/local/lib/python3.10/dist-packages (from ipython<9->ipympl) (0.7.5)\n", "Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from ipython<9->ipympl) (3.0.43)\n", "Requirement already satisfied: pygments in /usr/local/lib/python3.10/dist-packages (from ipython<9->ipympl) (2.16.1)\n", "Requirement already satisfied: backcall in /usr/local/lib/python3.10/dist-packages (from ipython<9->ipympl) (0.2.0)\n", "Requirement already satisfied: matplotlib-inline in /usr/local/lib/python3.10/dist-packages (from ipython<9->ipympl) (0.1.6)\n", "Requirement already satisfied: pexpect>4.3 in /usr/local/lib/python3.10/dist-packages (from ipython<9->ipympl) (4.9.0)\n", "Requirement already satisfied: ipykernel>=4.5.1 in /usr/local/lib/python3.10/dist-packages (from ipywidgets<9,>=7.6.0->ipympl) (5.5.6)\n", "Requirement already satisfied: widgetsnbextension~=3.6.0 in /usr/local/lib/python3.10/dist-packages (from ipywidgets<9,>=7.6.0->ipympl) (3.6.6)\n", "Requirement already satisfied: jupyterlab-widgets>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from ipywidgets<9,>=7.6.0->ipympl) (3.0.10)\n", "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4,>=3.4.0->ipympl) (1.2.0)\n", "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4,>=3.4.0->ipympl) (0.12.1)\n", "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4,>=3.4.0->ipympl) (4.50.0)\n", "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4,>=3.4.0->ipympl) (1.4.5)\n", "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4,>=3.4.0->ipympl) (24.0)\n", "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4,>=3.4.0->ipympl) (3.1.2)\n", "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4,>=3.4.0->ipympl) (2.8.2)\n", "Requirement already satisfied: jupyter-client in /usr/local/lib/python3.10/dist-packages (from ipykernel>=4.5.1->ipywidgets<9,>=7.6.0->ipympl) (6.1.12)\n", "Requirement already satisfied: tornado>=4.2 in /usr/local/lib/python3.10/dist-packages (from ipykernel>=4.5.1->ipywidgets<9,>=7.6.0->ipympl) (6.3.3)\n", "Requirement already satisfied: parso<0.9.0,>=0.8.3 in /usr/local/lib/python3.10/dist-packages (from jedi>=0.16->ipython<9->ipympl) (0.8.3)\n", "Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.10/dist-packages (from pexpect>4.3->ipython<9->ipympl) (0.7.0)\n", "Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython<9->ipympl) (0.2.13)\n", "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib<4,>=3.4.0->ipympl) (1.16.0)\n", "Requirement already satisfied: notebook>=4.4.1 in /usr/local/lib/python3.10/dist-packages (from widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (6.5.5)\n", "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (3.1.3)\n", "Requirement already satisfied: pyzmq<25,>=17 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (23.2.1)\n", "Requirement already satisfied: argon2-cffi in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (23.1.0)\n", "Requirement already satisfied: jupyter-core>=4.6.1 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (5.7.2)\n", "Requirement already satisfied: nbformat in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (5.10.3)\n", "Requirement already satisfied: nbconvert>=5 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (6.5.4)\n", "Requirement already satisfied: nest-asyncio>=1.5 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (1.6.0)\n", "Requirement already satisfied: Send2Trash>=1.8.0 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (1.8.2)\n", "Requirement already satisfied: terminado>=0.8.3 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (0.18.1)\n", "Requirement already satisfied: prometheus-client in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (0.20.0)\n", "Requirement already satisfied: nbclassic>=0.4.7 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (1.0.0)\n", "Requirement already satisfied: platformdirs>=2.5 in /usr/local/lib/python3.10/dist-packages (from jupyter-core>=4.6.1->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (4.2.0)\n", "Requirement already satisfied: jupyter-server>=1.8 in /usr/local/lib/python3.10/dist-packages (from nbclassic>=0.4.7->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (1.24.0)\n", "Requirement already satisfied: notebook-shim>=0.2.3 in /usr/local/lib/python3.10/dist-packages (from nbclassic>=0.4.7->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (0.2.4)\n", "Requirement already satisfied: lxml in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (4.9.4)\n", "Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (4.12.3)\n", "Requirement already satisfied: bleach in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (6.1.0)\n", "Requirement already satisfied: defusedxml in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (0.7.1)\n", "Requirement already satisfied: entrypoints>=0.2.2 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (0.4)\n", "Requirement already satisfied: jupyterlab-pygments in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (0.3.0)\n", "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (2.1.5)\n", "Requirement already satisfied: mistune<2,>=0.8.1 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (0.8.4)\n", "Requirement already satisfied: nbclient>=0.5.0 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (0.10.0)\n", "Requirement already satisfied: pandocfilters>=1.4.1 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (1.5.1)\n", "Requirement already satisfied: tinycss2 in /usr/local/lib/python3.10/dist-packages (from nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (1.2.1)\n", "Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.10/dist-packages (from nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (2.19.1)\n", "Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.10/dist-packages (from nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (4.19.2)\n", "Requirement already satisfied: argon2-cffi-bindings in /usr/local/lib/python3.10/dist-packages (from argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (21.2.0)\n", "Requirement already satisfied: attrs>=22.2.0 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (23.2.0)\n", "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (2023.12.1)\n", "Requirement already satisfied: referencing>=0.28.4 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (0.34.0)\n", "Requirement already satisfied: rpds-py>=0.7.1 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (0.18.0)\n", "Requirement already satisfied: anyio<4,>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from jupyter-server>=1.8->nbclassic>=0.4.7->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (3.7.1)\n", "Requirement already satisfied: websocket-client in /usr/local/lib/python3.10/dist-packages (from jupyter-server>=1.8->nbclassic>=0.4.7->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (1.7.0)\n", "Requirement already satisfied: cffi>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from argon2-cffi-bindings->argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (1.16.0)\n", "Requirement already satisfied: soupsieve>1.2 in /usr/local/lib/python3.10/dist-packages (from beautifulsoup4->nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (2.5)\n", "Requirement already satisfied: webencodings in /usr/local/lib/python3.10/dist-packages (from bleach->nbconvert>=5->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (0.5.1)\n", "Requirement already satisfied: idna>=2.8 in /usr/local/lib/python3.10/dist-packages (from anyio<4,>=3.1.0->jupyter-server>=1.8->nbclassic>=0.4.7->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (3.6)\n", "Requirement already satisfied: sniffio>=1.1 in /usr/local/lib/python3.10/dist-packages (from anyio<4,>=3.1.0->jupyter-server>=1.8->nbclassic>=0.4.7->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (1.3.1)\n", "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<4,>=3.1.0->jupyter-server>=1.8->nbclassic>=0.4.7->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (1.2.0)\n", "Requirement already satisfied: pycparser in /usr/local/lib/python3.10/dist-packages (from cffi>=1.0.1->argon2-cffi-bindings->argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets<9,>=7.6.0->ipympl) (2.21)\n", "Installing collected packages: jedi, ipympl\n", "Successfully installed ipympl-0.9.3 jedi-0.19.1\n" ] } ] }, { "cell_type": "code", "source": [ "from sklearn.model_selection import train_test_split\n", "from catboost import CatBoostClassifier\n", "\n", "import pandas as pd\n", "import numpy as np\n", "from google.colab import output\n", "output.disable_custom_widget_manager()\n", "%matplotlib inline\n", "%matplotlib widget" ], "metadata": { "id": "9pjahM2pZ6ze" }, "execution_count": 32, "outputs": [] }, { "cell_type": "code", "source": [ "!unzip /content/dataset.zip" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "v2xiSVszbZ1v", "outputId": "1a14a432-30e1-4de3-b919-b3df10eec0ca" }, "execution_count": 7, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Archive: /content/dataset.zip\n", " inflating: dataset.csv \n" ] } ] }, { "cell_type": "code", "source": [ "combinet = pd.read_csv(\"/content/dataset.csv\")" ], "metadata": { "id": "17J47bPodeD1" }, "execution_count": 16, "outputs": [] }, { "cell_type": "code", "execution_count": 18, "metadata": { "id": "wD74qy8qYL05" }, "outputs": [], "source": [ "X_train, X_test, y_train, y_test = train_test_split(combinet.drop(['Рабочий'], axis=1), combinet['Рабочий'], test_size = 0.1, random_state = 69)" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000, "referenced_widgets": [ "aa393e98c6ef47b58dc10a5b91aab35d" ] }, "id": "N3a5wulKYL05", "outputId": "41892796-14e6-4cb3-9de9-1fdb0924c910" }, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "MetricVisualizer(layout=Layout(align_self='stretch', height='500px'))" ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, "model_id": "aa393e98c6ef47b58dc10a5b91aab35d" } }, "metadata": {} }, { "output_type": "stream", "name": "stdout", "text": [ "Learning rate set to 0.04202\n", "0:\tlearn: 0.9448978\ttest: 0.9448882\tbest: 0.9448882 (0)\ttotal: 49.1ms\tremaining: 40m 56s\n", "100:\tlearn: 0.9762028\ttest: 0.9760677\tbest: 0.9760677 (100)\ttotal: 4.68s\tremaining: 38m 33s\n", "200:\tlearn: 0.9844888\ttest: 0.9842780\tbest: 0.9842780 (200)\ttotal: 7.4s\tremaining: 30m 33s\n", "300:\tlearn: 0.9881837\ttest: 0.9879439\tbest: 0.9879439 (300)\ttotal: 10.1s\tremaining: 27m 50s\n", "400:\tlearn: 0.9898107\ttest: 0.9895916\tbest: 0.9895916 (400)\ttotal: 12.8s\tremaining: 26m 28s\n", "500:\tlearn: 0.9909452\ttest: 0.9908547\tbest: 0.9908547 (500)\ttotal: 16.5s\tremaining: 27m 11s\n", "600:\tlearn: 0.9919582\ttest: 0.9919096\tbest: 0.9919096 (600)\ttotal: 20s\tremaining: 27m 24s\n", "700:\tlearn: 0.9926572\ttest: 0.9926012\tbest: 0.9926012 (700)\ttotal: 22.7s\tremaining: 26m 36s\n", "800:\tlearn: 0.9933017\ttest: 0.9933139\tbest: 0.9933139 (800)\ttotal: 25.5s\tremaining: 26m 4s\n", "900:\tlearn: 0.9937451\ttest: 0.9936561\tbest: 0.9936561 (900)\ttotal: 28.6s\tremaining: 26m\n", "1000:\tlearn: 0.9941591\ttest: 0.9940901\tbest: 0.9940901 (1000)\ttotal: 32.7s\tremaining: 26m 40s\n", "1100:\tlearn: 0.9944735\ttest: 0.9943830\tbest: 0.9943830 (1100)\ttotal: 35.4s\tremaining: 26m 13s\n", "1200:\tlearn: 0.9947479\ttest: 0.9945523\tbest: 0.9945523 (1200)\ttotal: 38.1s\tremaining: 25m 49s\n", "1300:\tlearn: 0.9950192\ttest: 0.9947852\tbest: 0.9947852 (1300)\ttotal: 40.9s\tremaining: 25m 30s\n", "1400:\tlearn: 0.9952266\ttest: 0.9950040\tbest: 0.9950040 (1400)\ttotal: 45.4s\tremaining: 26m 14s\n", "1500:\tlearn: 0.9954171\ttest: 0.9951486\tbest: 0.9951486 (1500)\ttotal: 48.2s\tremaining: 25m 55s\n", "1600:\tlearn: 0.9956061\ttest: 0.9953074\tbest: 0.9953074 (1600)\ttotal: 50.9s\tremaining: 25m 39s\n", "1700:\tlearn: 0.9957868\ttest: 0.9954309\tbest: 0.9954309 (1700)\ttotal: 53.6s\tremaining: 25m 23s\n", "1800:\tlearn: 0.9959338\ttest: 0.9956143\tbest: 0.9956143 (1800)\ttotal: 58.1s\tremaining: 25m 55s\n", "1900:\tlearn: 0.9960460\ttest: 0.9957519\tbest: 0.9957519 (1900)\ttotal: 1m\tremaining: 25m 38s\n", "2000:\tlearn: 0.9961444\ttest: 0.9957908\tbest: 0.9957908 (2000)\ttotal: 1m 3s\tremaining: 25m 24s\n", "2100:\tlearn: 0.9962353\ttest: 0.9958543\tbest: 0.9958543 (2100)\ttotal: 1m 6s\tremaining: 25m 10s\n", "2200:\tlearn: 0.9963329\ttest: 0.9959354\tbest: 0.9959354 (2200)\ttotal: 1m 10s\tremaining: 25m 37s\n", "2300:\tlearn: 0.9964164\ttest: 0.9960095\tbest: 0.9960095 (2300)\ttotal: 1m 13s\tremaining: 25m 23s\n", "2400:\tlearn: 0.9965007\ttest: 0.9960801\tbest: 0.9960801 (2400)\ttotal: 1m 16s\tremaining: 25m 11s\n", "2500:\tlearn: 0.9965548\ttest: 0.9961401\tbest: 0.9961401 (2500)\ttotal: 1m 19s\tremaining: 25m\n", "2600:\tlearn: 0.9966313\ttest: 0.9962071\tbest: 0.9962071 (2600)\ttotal: 1m 23s\tremaining: 25m 14s\n", "2700:\tlearn: 0.9966760\ttest: 0.9962494\tbest: 0.9962494 (2700)\ttotal: 1m 26s\tremaining: 25m 10s\n", "2800:\tlearn: 0.9967277\ttest: 0.9963165\tbest: 0.9963165 (2800)\ttotal: 1m 29s\tremaining: 24m 59s\n", "2900:\tlearn: 0.9967810\ttest: 0.9963623\tbest: 0.9963623 (2900)\ttotal: 1m 31s\tremaining: 24m 49s\n", "3000:\tlearn: 0.9968367\ttest: 0.9964012\tbest: 0.9964012 (3000)\ttotal: 1m 35s\tremaining: 24m 53s\n", "3100:\tlearn: 0.9968704\ttest: 0.9964294\tbest: 0.9964294 (3100)\ttotal: 1m 39s\tremaining: 24m 57s\n", "3200:\tlearn: 0.9969076\ttest: 0.9964400\tbest: 0.9964400 (3200)\ttotal: 1m 41s\tremaining: 24m 47s\n", "3300:\tlearn: 0.9969586\ttest: 0.9964611\tbest: 0.9964611 (3300)\ttotal: 1m 44s\tremaining: 24m 37s\n", "3400:\tlearn: 0.9970002\ttest: 0.9965246\tbest: 0.9965246 (3400)\ttotal: 1m 47s\tremaining: 24m 28s\n", "3500:\tlearn: 0.9970331\ttest: 0.9965388\tbest: 0.9965388 (3500)\ttotal: 1m 51s\tremaining: 24m 43s\n", "3600:\tlearn: 0.9970652\ttest: 0.9965882\tbest: 0.9965882 (3600)\ttotal: 1m 54s\tremaining: 24m 33s\n", "3700:\tlearn: 0.9970856\ttest: 0.9966164\tbest: 0.9966164 (3700)\ttotal: 1m 57s\tremaining: 24m 23s\n", "3800:\tlearn: 0.9971123\ttest: 0.9966234\tbest: 0.9966234 (3800)\ttotal: 1m 59s\tremaining: 24m 14s\n", "3900:\tlearn: 0.9971397\ttest: 0.9966552\tbest: 0.9966552 (3900)\ttotal: 2m 4s\tremaining: 24m 27s\n", "4000:\tlearn: 0.9971778\ttest: 0.9967011\tbest: 0.9967011 (4000)\ttotal: 2m 6s\tremaining: 24m 18s\n", "4100:\tlearn: 0.9972044\ttest: 0.9967152\tbest: 0.9967152 (4100)\ttotal: 2m 9s\tremaining: 24m 10s\n", "4200:\tlearn: 0.9972291\ttest: 0.9967469\tbest: 0.9967469 (4200)\ttotal: 2m 12s\tremaining: 24m 2s\n", "4300:\tlearn: 0.9972554\ttest: 0.9967575\tbest: 0.9967575 (4300)\ttotal: 2m 16s\tremaining: 24m 13s\n", "4400:\tlearn: 0.9972824\ttest: 0.9967998\tbest: 0.9967998 (4400)\ttotal: 2m 19s\tremaining: 24m 5s\n", "4500:\tlearn: 0.9973036\ttest: 0.9968245\tbest: 0.9968245 (4500)\ttotal: 2m 22s\tremaining: 23m 57s\n", "4600:\tlearn: 0.9973240\ttest: 0.9968104\tbest: 0.9968245 (4500)\ttotal: 2m 24s\tremaining: 23m 50s\n", "4700:\tlearn: 0.9973534\ttest: 0.9968210\tbest: 0.9968245 (4500)\ttotal: 2m 28s\tremaining: 23m 55s\n", "4800:\tlearn: 0.9973687\ttest: 0.9968281\tbest: 0.9968281 (4800)\ttotal: 2m 32s\tremaining: 23m 52s\n", "4900:\tlearn: 0.9973820\ttest: 0.9968387\tbest: 0.9968387 (4900)\ttotal: 2m 34s\tremaining: 23m 44s\n", "5000:\tlearn: 0.9974036\ttest: 0.9968634\tbest: 0.9968634 (5000)\ttotal: 2m 37s\tremaining: 23m 36s\n", "5100:\tlearn: 0.9974255\ttest: 0.9968986\tbest: 0.9968986 (5100)\ttotal: 2m 40s\tremaining: 23m 34s\n", "5200:\tlearn: 0.9974412\ttest: 0.9969269\tbest: 0.9969269 (5200)\ttotal: 2m 44s\tremaining: 23m 38s\n", "5300:\tlearn: 0.9974604\ttest: 0.9969551\tbest: 0.9969551 (5300)\ttotal: 2m 47s\tremaining: 23m 31s\n", "5400:\tlearn: 0.9974784\ttest: 0.9969445\tbest: 0.9969551 (5300)\ttotal: 2m 50s\tremaining: 23m 24s\n", "5500:\tlearn: 0.9975008\ttest: 0.9969516\tbest: 0.9969551 (5300)\ttotal: 2m 52s\tremaining: 23m 17s\n", "5600:\tlearn: 0.9975055\ttest: 0.9969621\tbest: 0.9969621 (5600)\ttotal: 2m 57s\tremaining: 23m 25s\n", "5700:\tlearn: 0.9975259\ttest: 0.9969551\tbest: 0.9969621 (5600)\ttotal: 2m 59s\tremaining: 23m 18s\n", "5800:\tlearn: 0.9975404\ttest: 0.9969692\tbest: 0.9969692 (5800)\ttotal: 3m 2s\tremaining: 23m 12s\n", "5900:\tlearn: 0.9975569\ttest: 0.9969868\tbest: 0.9969868 (5900)\ttotal: 3m 5s\tremaining: 23m 5s\n", "6000:\tlearn: 0.9975780\ttest: 0.9969798\tbest: 0.9969868 (5900)\ttotal: 3m 9s\tremaining: 23m 12s\n", "6100:\tlearn: 0.9975886\ttest: 0.9969939\tbest: 0.9969939 (6100)\ttotal: 3m 12s\tremaining: 23m 6s\n", "6200:\tlearn: 0.9976051\ttest: 0.9970080\tbest: 0.9970080 (6200)\ttotal: 3m 15s\tremaining: 22m 59s\n", "6300:\tlearn: 0.9976137\ttest: 0.9970221\tbest: 0.9970221 (6300)\ttotal: 3m 17s\tremaining: 22m 53s\n", "6400:\tlearn: 0.9976286\ttest: 0.9970045\tbest: 0.9970221 (6300)\ttotal: 3m 22s\tremaining: 22m 59s\n", "6500:\tlearn: 0.9976443\ttest: 0.9970186\tbest: 0.9970221 (6300)\ttotal: 3m 25s\tremaining: 22m 52s\n", "6600:\tlearn: 0.9976572\ttest: 0.9970186\tbest: 0.9970221 (6300)\ttotal: 3m 27s\tremaining: 22m 46s\n", "6700:\tlearn: 0.9976623\ttest: 0.9970433\tbest: 0.9970433 (6700)\ttotal: 3m 30s\tremaining: 22m 40s\n", "6800:\tlearn: 0.9976705\ttest: 0.9970362\tbest: 0.9970433 (6700)\ttotal: 3m 34s\tremaining: 22m 41s\n", "6900:\tlearn: 0.9976858\ttest: 0.9970609\tbest: 0.9970609 (6900)\ttotal: 3m 37s\tremaining: 22m 40s\n", "7000:\tlearn: 0.9977015\ttest: 0.9970786\tbest: 0.9970786 (7000)\ttotal: 3m 40s\tremaining: 22m 34s\n", "7100:\tlearn: 0.9977152\ttest: 0.9970892\tbest: 0.9970892 (7100)\ttotal: 3m 43s\tremaining: 22m 28s\n", "7200:\tlearn: 0.9977341\ttest: 0.9970892\tbest: 0.9970892 (7100)\ttotal: 3m 46s\tremaining: 22m 24s\n", "7300:\tlearn: 0.9977435\ttest: 0.9970892\tbest: 0.9970892 (7100)\ttotal: 3m 50s\tremaining: 22m 26s\n", "7400:\tlearn: 0.9977556\ttest: 0.9971068\tbest: 0.9971068 (7400)\ttotal: 3m 52s\tremaining: 22m 20s\n", "7500:\tlearn: 0.9977627\ttest: 0.9971103\tbest: 0.9971103 (7500)\ttotal: 3m 55s\tremaining: 22m 15s\n", "7600:\tlearn: 0.9977748\ttest: 0.9971280\tbest: 0.9971280 (7600)\ttotal: 3m 58s\tremaining: 22m 9s\n", "7700:\tlearn: 0.9977815\ttest: 0.9971315\tbest: 0.9971315 (7700)\ttotal: 4m 2s\tremaining: 22m 13s\n", "7800:\tlearn: 0.9977936\ttest: 0.9971421\tbest: 0.9971421 (7800)\ttotal: 4m 5s\tremaining: 22m 7s\n", "7900:\tlearn: 0.9978097\ttest: 0.9971491\tbest: 0.9971491 (7900)\ttotal: 4m 8s\tremaining: 22m 2s\n", "8000:\tlearn: 0.9978207\ttest: 0.9971421\tbest: 0.9971491 (7900)\ttotal: 4m 10s\tremaining: 21m 56s\n", "8100:\tlearn: 0.9978270\ttest: 0.9971527\tbest: 0.9971527 (8100)\ttotal: 4m 15s\tremaining: 22m\n", "8200:\tlearn: 0.9978387\ttest: 0.9971562\tbest: 0.9971562 (8200)\ttotal: 4m 18s\tremaining: 21m 55s\n", "8300:\tlearn: 0.9978442\ttest: 0.9971562\tbest: 0.9971562 (8200)\ttotal: 4m 20s\tremaining: 21m 49s\n", "8400:\tlearn: 0.9978517\ttest: 0.9971527\tbest: 0.9971562 (8200)\ttotal: 4m 23s\tremaining: 21m 44s\n", "8500:\tlearn: 0.9978595\ttest: 0.9971491\tbest: 0.9971562 (8200)\ttotal: 4m 27s\tremaining: 21m 44s\n", "8600:\tlearn: 0.9978728\ttest: 0.9971703\tbest: 0.9971703 (8600)\ttotal: 4m 30s\tremaining: 21m 42s\n", "8700:\tlearn: 0.9978783\ttest: 0.9971950\tbest: 0.9971950 (8700)\ttotal: 4m 33s\tremaining: 21m 37s\n", "8800:\tlearn: 0.9978866\ttest: 0.9972021\tbest: 0.9972021 (8800)\ttotal: 4m 36s\tremaining: 21m 32s\n", "8900:\tlearn: 0.9978928\ttest: 0.9971985\tbest: 0.9972021 (8800)\ttotal: 4m 39s\tremaining: 21m 28s\n", "9000:\tlearn: 0.9978987\ttest: 0.9972056\tbest: 0.9972056 (9000)\ttotal: 4m 43s\tremaining: 21m 29s\n", "9100:\tlearn: 0.9979069\ttest: 0.9972021\tbest: 0.9972056 (9000)\ttotal: 4m 45s\tremaining: 21m 24s\n", "9200:\tlearn: 0.9979132\ttest: 0.9972197\tbest: 0.9972197 (9200)\ttotal: 4m 48s\tremaining: 21m 19s\n", "9300:\tlearn: 0.9979179\ttest: 0.9972197\tbest: 0.9972197 (9200)\ttotal: 4m 51s\tremaining: 21m 14s\n", "9400:\tlearn: 0.9979265\ttest: 0.9972197\tbest: 0.9972197 (9200)\ttotal: 4m 55s\tremaining: 21m 17s\n", "9500:\tlearn: 0.9979375\ttest: 0.9972303\tbest: 0.9972303 (9500)\ttotal: 4m 58s\tremaining: 21m 12s\n", "9600:\tlearn: 0.9979461\ttest: 0.9972444\tbest: 0.9972444 (9600)\ttotal: 5m 1s\tremaining: 21m 7s\n", "9700:\tlearn: 0.9979501\ttest: 0.9972550\tbest: 0.9972550 (9700)\ttotal: 5m 3s\tremaining: 21m 2s\n", "9800:\tlearn: 0.9979563\ttest: 0.9972550\tbest: 0.9972550 (9700)\ttotal: 5m 8s\tremaining: 21m 5s\n", "9900:\tlearn: 0.9979634\ttest: 0.9972691\tbest: 0.9972691 (9900)\ttotal: 5m 11s\tremaining: 21m\n", "10000:\tlearn: 0.9979748\ttest: 0.9972762\tbest: 0.9972762 (10000)\ttotal: 5m 13s\tremaining: 20m 55s\n", "10100:\tlearn: 0.9979787\ttest: 0.9972691\tbest: 0.9972762 (10000)\ttotal: 5m 16s\tremaining: 20m 50s\n", "10200:\tlearn: 0.9979948\ttest: 0.9972797\tbest: 0.9972797 (10200)\ttotal: 5m 20s\tremaining: 20m 49s\n", "10300:\tlearn: 0.9980010\ttest: 0.9972832\tbest: 0.9972832 (10300)\ttotal: 5m 23s\tremaining: 20m 47s\n", "10400:\tlearn: 0.9980136\ttest: 0.9972903\tbest: 0.9972903 (10400)\ttotal: 5m 26s\tremaining: 20m 41s\n", "10500:\tlearn: 0.9980183\ttest: 0.9972903\tbest: 0.9972903 (10400)\ttotal: 5m 28s\tremaining: 20m 36s\n", "10600:\tlearn: 0.9980281\ttest: 0.9972938\tbest: 0.9972938 (10600)\ttotal: 5m 31s\tremaining: 20m 32s\n", "10700:\tlearn: 0.9980363\ttest: 0.9972938\tbest: 0.9972938 (10600)\ttotal: 5m 36s\tremaining: 20m 34s\n", "10800:\tlearn: 0.9980492\ttest: 0.9973114\tbest: 0.9973114 (10800)\ttotal: 5m 38s\tremaining: 20m 29s\n", "10900:\tlearn: 0.9980571\ttest: 0.9973079\tbest: 0.9973114 (10800)\ttotal: 5m 41s\tremaining: 20m 24s\n", "11000:\tlearn: 0.9980614\ttest: 0.9973044\tbest: 0.9973114 (10800)\ttotal: 5m 44s\tremaining: 20m 19s\n", "11100:\tlearn: 0.9980661\ttest: 0.9973150\tbest: 0.9973150 (11100)\ttotal: 5m 48s\tremaining: 20m 21s\n", "11200:\tlearn: 0.9980728\ttest: 0.9973185\tbest: 0.9973185 (11200)\ttotal: 5m 51s\tremaining: 20m 16s\n", "11300:\tlearn: 0.9980822\ttest: 0.9973256\tbest: 0.9973256 (11300)\ttotal: 5m 53s\tremaining: 20m 11s\n", "11400:\tlearn: 0.9980884\ttest: 0.9973361\tbest: 0.9973361 (11400)\ttotal: 5m 56s\tremaining: 20m 7s\n", "11500:\tlearn: 0.9980908\ttest: 0.9973432\tbest: 0.9973432 (11500)\ttotal: 6m\tremaining: 20m 8s\n", "11600:\tlearn: 0.9980982\ttest: 0.9973432\tbest: 0.9973432 (11500)\ttotal: 6m 3s\tremaining: 20m 4s\n", "11700:\tlearn: 0.9981061\ttest: 0.9973503\tbest: 0.9973503 (11700)\ttotal: 6m 6s\tremaining: 19m 59s\n", "11800:\tlearn: 0.9981088\ttest: 0.9973467\tbest: 0.9973503 (11700)\ttotal: 6m 9s\tremaining: 19m 54s\n", "11900:\tlearn: 0.9981206\ttest: 0.9973608\tbest: 0.9973608 (11900)\ttotal: 6m 12s\tremaining: 19m 52s\n", "12000:\tlearn: 0.9981245\ttest: 0.9973608\tbest: 0.9973608 (11900)\ttotal: 6m 16s\tremaining: 19m 51s\n", "12100:\tlearn: 0.9981292\ttest: 0.9973538\tbest: 0.9973608 (11900)\ttotal: 6m 18s\tremaining: 19m 46s\n", "12200:\tlearn: 0.9981378\ttest: 0.9973608\tbest: 0.9973608 (11900)\ttotal: 6m 21s\tremaining: 19m 42s\n", "12300:\tlearn: 0.9981414\ttest: 0.9973608\tbest: 0.9973608 (11900)\ttotal: 6m 24s\tremaining: 19m 37s\n", "12400:\tlearn: 0.9981469\ttest: 0.9973608\tbest: 0.9973608 (11900)\ttotal: 6m 28s\tremaining: 19m 38s\n", "12500:\tlearn: 0.9981520\ttest: 0.9973538\tbest: 0.9973608 (11900)\ttotal: 6m 31s\tremaining: 19m 33s\n", "12600:\tlearn: 0.9981637\ttest: 0.9973785\tbest: 0.9973785 (12600)\ttotal: 6m 33s\tremaining: 19m 29s\n", "12700:\tlearn: 0.9981692\ttest: 0.9973750\tbest: 0.9973785 (12600)\ttotal: 6m 36s\tremaining: 19m 24s\n", "12800:\tlearn: 0.9981739\ttest: 0.9973785\tbest: 0.9973785 (12600)\ttotal: 6m 41s\tremaining: 19m 25s\n", "12900:\tlearn: 0.9981790\ttest: 0.9973820\tbest: 0.9973820 (12900)\ttotal: 6m 43s\tremaining: 19m 21s\n", "13000:\tlearn: 0.9981802\ttest: 0.9973961\tbest: 0.9973961 (13000)\ttotal: 6m 46s\tremaining: 19m 16s\n", "13100:\tlearn: 0.9981841\ttest: 0.9974032\tbest: 0.9974032 (13100)\ttotal: 6m 49s\tremaining: 19m 12s\n", "13200:\tlearn: 0.9981888\ttest: 0.9974032\tbest: 0.9974032 (13100)\ttotal: 6m 52s\tremaining: 19m 10s\n", "13300:\tlearn: 0.9981919\ttest: 0.9974067\tbest: 0.9974067 (13300)\ttotal: 6m 56s\tremaining: 19m 8s\n", "13400:\tlearn: 0.9981931\ttest: 0.9974032\tbest: 0.9974067 (13300)\ttotal: 6m 58s\tremaining: 19m 3s\n", "13500:\tlearn: 0.9982029\ttest: 0.9973961\tbest: 0.9974067 (13300)\ttotal: 7m 1s\tremaining: 18m 59s\n", "13600:\tlearn: 0.9982104\ttest: 0.9974032\tbest: 0.9974067 (13300)\ttotal: 7m 4s\tremaining: 18m 54s\n", "13700:\tlearn: 0.9982115\ttest: 0.9974208\tbest: 0.9974208 (13700)\ttotal: 7m 8s\tremaining: 18m 55s\n", "13800:\tlearn: 0.9982198\ttest: 0.9974455\tbest: 0.9974455 (13800)\ttotal: 7m 11s\tremaining: 18m 51s\n", "13900:\tlearn: 0.9982233\ttest: 0.9974491\tbest: 0.9974491 (13900)\ttotal: 7m 13s\tremaining: 18m 46s\n", "14000:\tlearn: 0.9982261\ttest: 0.9974455\tbest: 0.9974491 (13900)\ttotal: 7m 16s\tremaining: 18m 42s\n", "14100:\tlearn: 0.9982351\ttest: 0.9974455\tbest: 0.9974491 (13900)\ttotal: 7m 21s\tremaining: 18m 42s\n", "14200:\tlearn: 0.9982366\ttest: 0.9974596\tbest: 0.9974596 (14200)\ttotal: 7m 23s\tremaining: 18m 38s\n", "14300:\tlearn: 0.9982406\ttest: 0.9974667\tbest: 0.9974667 (14300)\ttotal: 7m 26s\tremaining: 18m 34s\n", "14400:\tlearn: 0.9982476\ttest: 0.9974632\tbest: 0.9974667 (14300)\ttotal: 7m 28s\tremaining: 18m 29s\n", "14500:\tlearn: 0.9982531\ttest: 0.9974667\tbest: 0.9974667 (14300)\ttotal: 7m 33s\tremaining: 18m 29s\n", "14600:\tlearn: 0.9982558\ttest: 0.9974667\tbest: 0.9974667 (14300)\ttotal: 7m 36s\tremaining: 18m 26s\n", "14700:\tlearn: 0.9982594\ttest: 0.9974667\tbest: 0.9974667 (14300)\ttotal: 7m 38s\tremaining: 18m 21s\n", "14800:\tlearn: 0.9982676\ttest: 0.9974667\tbest: 0.9974667 (14300)\ttotal: 7m 41s\tremaining: 18m 17s\n", "14900:\tlearn: 0.9982723\ttest: 0.9974702\tbest: 0.9974702 (14900)\ttotal: 7m 44s\tremaining: 18m 13s\n", "15000:\tlearn: 0.9982747\ttest: 0.9974667\tbest: 0.9974702 (14900)\ttotal: 7m 48s\tremaining: 18m 13s\n", "15100:\tlearn: 0.9982782\ttest: 0.9974737\tbest: 0.9974737 (15100)\ttotal: 7m 51s\tremaining: 18m 8s\n", "15200:\tlearn: 0.9982856\ttest: 0.9974702\tbest: 0.9974737 (15100)\ttotal: 7m 53s\tremaining: 18m 4s\n", "15300:\tlearn: 0.9982884\ttest: 0.9974773\tbest: 0.9974773 (15300)\ttotal: 7m 56s\tremaining: 18m\n", "15400:\tlearn: 0.9982915\ttest: 0.9974702\tbest: 0.9974773 (15300)\ttotal: 8m\tremaining: 18m\n", "15500:\tlearn: 0.9982962\ttest: 0.9974773\tbest: 0.9974773 (15300)\ttotal: 8m 3s\tremaining: 17m 56s\n", "15600:\tlearn: 0.9982994\ttest: 0.9974808\tbest: 0.9974808 (15600)\ttotal: 8m 6s\tremaining: 17m 52s\n", "15700:\tlearn: 0.9983052\ttest: 0.9974879\tbest: 0.9974879 (15700)\ttotal: 8m 8s\tremaining: 17m 47s\n", "15800:\tlearn: 0.9983072\ttest: 0.9974843\tbest: 0.9974879 (15700)\ttotal: 8m 13s\tremaining: 17m 47s\n", "15900:\tlearn: 0.9983123\ttest: 0.9974843\tbest: 0.9974879 (15700)\ttotal: 8m 15s\tremaining: 17m 43s\n", "16000:\tlearn: 0.9983127\ttest: 0.9974843\tbest: 0.9974879 (15700)\ttotal: 8m 18s\tremaining: 17m 39s\n", "16100:\tlearn: 0.9983166\ttest: 0.9974949\tbest: 0.9974949 (16100)\ttotal: 8m 21s\tremaining: 17m 35s\n", "16200:\tlearn: 0.9983201\ttest: 0.9974984\tbest: 0.9974984 (16200)\ttotal: 8m 24s\tremaining: 17m 32s\n", "16300:\tlearn: 0.9983229\ttest: 0.9974984\tbest: 0.9974984 (16200)\ttotal: 8m 28s\tremaining: 17m 30s\n", "16400:\tlearn: 0.9983311\ttest: 0.9975020\tbest: 0.9975020 (16400)\ttotal: 8m 31s\tremaining: 17m 26s\n", "16500:\tlearn: 0.9983378\ttest: 0.9975055\tbest: 0.9975055 (16500)\ttotal: 8m 33s\tremaining: 17m 22s\n", "16600:\tlearn: 0.9983437\ttest: 0.9975055\tbest: 0.9975055 (16500)\ttotal: 8m 36s\tremaining: 17m 18s\n", "16700:\tlearn: 0.9983452\ttest: 0.9975161\tbest: 0.9975161 (16700)\ttotal: 8m 40s\tremaining: 17m 18s\n", "16800:\tlearn: 0.9983488\ttest: 0.9975090\tbest: 0.9975161 (16700)\ttotal: 8m 43s\tremaining: 17m 14s\n", "16900:\tlearn: 0.9983515\ttest: 0.9975161\tbest: 0.9975161 (16700)\ttotal: 8m 46s\tremaining: 17m 10s\n", "17000:\tlearn: 0.9983546\ttest: 0.9975161\tbest: 0.9975161 (16700)\ttotal: 8m 48s\tremaining: 17m 6s\n", "17100:\tlearn: 0.9983586\ttest: 0.9975126\tbest: 0.9975161 (16700)\ttotal: 8m 52s\tremaining: 17m 5s\n", "17200:\tlearn: 0.9983605\ttest: 0.9975161\tbest: 0.9975161 (16700)\ttotal: 8m 55s\tremaining: 17m 1s\n", "17300:\tlearn: 0.9983640\ttest: 0.9975126\tbest: 0.9975161 (16700)\ttotal: 8m 58s\tremaining: 16m 57s\n", "17400:\tlearn: 0.9983688\ttest: 0.9975231\tbest: 0.9975231 (17400)\ttotal: 9m 1s\tremaining: 16m 53s\n", "17500:\tlearn: 0.9983672\ttest: 0.9975161\tbest: 0.9975231 (17400)\ttotal: 9m 4s\tremaining: 16m 50s\n", "17600:\tlearn: 0.9983735\ttest: 0.9975196\tbest: 0.9975231 (17400)\ttotal: 9m 8s\tremaining: 16m 48s\n", "17700:\tlearn: 0.9983731\ttest: 0.9975196\tbest: 0.9975231 (17400)\ttotal: 9m 10s\tremaining: 16m 44s\n", "17800:\tlearn: 0.9983774\ttest: 0.9975196\tbest: 0.9975231 (17400)\ttotal: 9m 13s\tremaining: 16m 41s\n", "17900:\tlearn: 0.9983770\ttest: 0.9975231\tbest: 0.9975231 (17400)\ttotal: 9m 16s\tremaining: 16m 37s\n", "18000:\tlearn: 0.9983793\ttest: 0.9975231\tbest: 0.9975231 (17400)\ttotal: 9m 20s\tremaining: 16m 36s\n", "18100:\tlearn: 0.9983829\ttest: 0.9975302\tbest: 0.9975302 (18100)\ttotal: 9m 23s\tremaining: 16m 32s\n", "18200:\tlearn: 0.9983872\ttest: 0.9975231\tbest: 0.9975302 (18100)\ttotal: 9m 25s\tremaining: 16m 28s\n", "18300:\tlearn: 0.9983899\ttest: 0.9975302\tbest: 0.9975302 (18100)\ttotal: 9m 28s\tremaining: 16m 24s\n", "18400:\tlearn: 0.9983978\ttest: 0.9975196\tbest: 0.9975302 (18100)\ttotal: 9m 32s\tremaining: 16m 23s\n", "18500:\tlearn: 0.9984029\ttest: 0.9975196\tbest: 0.9975302 (18100)\ttotal: 9m 35s\tremaining: 16m 19s\n", "18600:\tlearn: 0.9984048\ttest: 0.9975267\tbest: 0.9975302 (18100)\ttotal: 9m 38s\tremaining: 16m 16s\n", "18700:\tlearn: 0.9984087\ttest: 0.9975231\tbest: 0.9975302 (18100)\ttotal: 9m 40s\tremaining: 16m 12s\n", "18800:\tlearn: 0.9984142\ttest: 0.9975267\tbest: 0.9975302 (18100)\ttotal: 9m 43s\tremaining: 16m 9s\n", "18900:\tlearn: 0.9984174\ttest: 0.9975267\tbest: 0.9975302 (18100)\ttotal: 9m 47s\tremaining: 16m 7s\n", "19000:\tlearn: 0.9984193\ttest: 0.9975373\tbest: 0.9975373 (19000)\ttotal: 9m 50s\tremaining: 16m 3s\n", "19100:\tlearn: 0.9984221\ttest: 0.9975302\tbest: 0.9975373 (19000)\ttotal: 9m 53s\tremaining: 15m 59s\n", "19200:\tlearn: 0.9984279\ttest: 0.9975267\tbest: 0.9975373 (19000)\ttotal: 9m 55s\tremaining: 15m 55s\n", "19300:\tlearn: 0.9984303\ttest: 0.9975337\tbest: 0.9975373 (19000)\ttotal: 10m\tremaining: 15m 54s\n", "19400:\tlearn: 0.9984315\ttest: 0.9975267\tbest: 0.9975373 (19000)\ttotal: 10m 2s\tremaining: 15m 50s\n", "19500:\tlearn: 0.9984342\ttest: 0.9975337\tbest: 0.9975373 (19000)\ttotal: 10m 5s\tremaining: 15m 46s\n", "19600:\tlearn: 0.9984358\ttest: 0.9975337\tbest: 0.9975373 (19000)\ttotal: 10m 8s\tremaining: 15m 43s\n", "19700:\tlearn: 0.9984366\ttest: 0.9975373\tbest: 0.9975373 (19000)\ttotal: 10m 12s\tremaining: 15m 41s\n", "19800:\tlearn: 0.9984409\ttest: 0.9975408\tbest: 0.9975408 (19800)\ttotal: 10m 15s\tremaining: 15m 38s\n", "19900:\tlearn: 0.9984425\ttest: 0.9975443\tbest: 0.9975443 (19900)\ttotal: 10m 17s\tremaining: 15m 34s\n", "20000:\tlearn: 0.9984472\ttest: 0.9975443\tbest: 0.9975443 (19900)\ttotal: 10m 20s\tremaining: 15m 30s\n", "20100:\tlearn: 0.9984499\ttest: 0.9975443\tbest: 0.9975443 (19900)\ttotal: 10m 23s\tremaining: 15m 27s\n", "20200:\tlearn: 0.9984562\ttest: 0.9975478\tbest: 0.9975478 (20200)\ttotal: 10m 27s\tremaining: 15m 25s\n", "20300:\tlearn: 0.9984609\ttest: 0.9975478\tbest: 0.9975478 (20200)\ttotal: 10m 30s\tremaining: 15m 21s\n", "20400:\tlearn: 0.9984617\ttest: 0.9975443\tbest: 0.9975478 (20200)\ttotal: 10m 32s\tremaining: 15m 17s\n", "20500:\tlearn: 0.9984644\ttest: 0.9975443\tbest: 0.9975478 (20200)\ttotal: 10m 35s\tremaining: 15m 14s\n", "20600:\tlearn: 0.9984707\ttest: 0.9975478\tbest: 0.9975478 (20200)\ttotal: 10m 39s\tremaining: 15m 12s\n", "20700:\tlearn: 0.9984726\ttest: 0.9975478\tbest: 0.9975478 (20200)\ttotal: 10m 42s\tremaining: 15m 8s\n", "20800:\tlearn: 0.9984754\ttest: 0.9975514\tbest: 0.9975514 (20800)\ttotal: 10m 44s\tremaining: 15m 5s\n", "20900:\tlearn: 0.9984793\ttest: 0.9975584\tbest: 0.9975584 (20900)\ttotal: 10m 47s\tremaining: 15m 1s\n", "21000:\tlearn: 0.9984832\ttest: 0.9975620\tbest: 0.9975620 (21000)\ttotal: 10m 51s\tremaining: 14m 59s\n", "21100:\tlearn: 0.9984836\ttest: 0.9975549\tbest: 0.9975620 (21000)\ttotal: 10m 54s\tremaining: 14m 56s\n", "21200:\tlearn: 0.9984864\ttest: 0.9975584\tbest: 0.9975620 (21000)\ttotal: 10m 57s\tremaining: 14m 52s\n", "21300:\tlearn: 0.9984891\ttest: 0.9975584\tbest: 0.9975620 (21000)\ttotal: 10m 59s\tremaining: 14m 48s\n", "21400:\tlearn: 0.9984911\ttest: 0.9975584\tbest: 0.9975620 (21000)\ttotal: 11m 2s\tremaining: 14m 45s\n", "21500:\tlearn: 0.9984926\ttest: 0.9975655\tbest: 0.9975655 (21500)\ttotal: 11m 6s\tremaining: 14m 43s\n", "21600:\tlearn: 0.9984966\ttest: 0.9975690\tbest: 0.9975690 (21600)\ttotal: 11m 9s\tremaining: 14m 39s\n", "21700:\tlearn: 0.9984966\ttest: 0.9975725\tbest: 0.9975725 (21700)\ttotal: 11m 11s\tremaining: 14m 36s\n", "21800:\tlearn: 0.9984993\ttest: 0.9975690\tbest: 0.9975725 (21700)\ttotal: 11m 14s\tremaining: 14m 32s\n", "21900:\tlearn: 0.9985013\ttest: 0.9975725\tbest: 0.9975725 (21700)\ttotal: 11m 18s\tremaining: 14m 31s\n", "22000:\tlearn: 0.9985083\ttest: 0.9975761\tbest: 0.9975761 (22000)\ttotal: 11m 21s\tremaining: 14m 27s\n", "22100:\tlearn: 0.9985099\ttest: 0.9975796\tbest: 0.9975796 (22100)\ttotal: 11m 24s\tremaining: 14m 23s\n", "22200:\tlearn: 0.9985122\ttest: 0.9975831\tbest: 0.9975831 (22200)\ttotal: 11m 26s\tremaining: 14m 20s\n", "22300:\tlearn: 0.9985162\ttest: 0.9975867\tbest: 0.9975867 (22300)\ttotal: 11m 30s\tremaining: 14m 17s\n", "22400:\tlearn: 0.9985173\ttest: 0.9975831\tbest: 0.9975867 (22300)\ttotal: 11m 33s\tremaining: 14m 14s\n", "22500:\tlearn: 0.9985177\ttest: 0.9975937\tbest: 0.9975937 (22500)\ttotal: 11m 36s\tremaining: 14m 11s\n", "22600:\tlearn: 0.9985185\ttest: 0.9975902\tbest: 0.9975937 (22500)\ttotal: 11m 39s\tremaining: 14m 7s\n", "22700:\tlearn: 0.9985236\ttest: 0.9975972\tbest: 0.9975972 (22700)\ttotal: 11m 41s\tremaining: 14m 3s\n", "22800:\tlearn: 0.9985271\ttest: 0.9976008\tbest: 0.9976008 (22800)\ttotal: 11m 46s\tremaining: 14m 2s\n", "22900:\tlearn: 0.9985271\ttest: 0.9976008\tbest: 0.9976008 (22800)\ttotal: 11m 48s\tremaining: 13m 58s\n", "23000:\tlearn: 0.9985303\ttest: 0.9975902\tbest: 0.9976008 (22800)\ttotal: 11m 51s\tremaining: 13m 55s\n", "23100:\tlearn: 0.9985326\ttest: 0.9976008\tbest: 0.9976008 (22800)\ttotal: 11m 54s\tremaining: 13m 51s\n", "23200:\tlearn: 0.9985350\ttest: 0.9976008\tbest: 0.9976008 (22800)\ttotal: 11m 58s\tremaining: 13m 49s\n", "23300:\tlearn: 0.9985373\ttest: 0.9976043\tbest: 0.9976043 (23300)\ttotal: 12m 1s\tremaining: 13m 46s\n", "23400:\tlearn: 0.9985409\ttest: 0.9976043\tbest: 0.9976043 (23300)\ttotal: 12m 3s\tremaining: 13m 42s\n", "23500:\tlearn: 0.9985444\ttest: 0.9976008\tbest: 0.9976043 (23300)\ttotal: 12m 6s\tremaining: 13m 38s\n", "23600:\tlearn: 0.9985456\ttest: 0.9976008\tbest: 0.9976043 (23300)\ttotal: 12m 9s\tremaining: 13m 35s\n", "23700:\tlearn: 0.9985499\ttest: 0.9976078\tbest: 0.9976078 (23700)\ttotal: 12m 13s\tremaining: 13m 33s\n", "23800:\tlearn: 0.9985522\ttest: 0.9976008\tbest: 0.9976078 (23700)\ttotal: 12m 15s\tremaining: 13m 29s\n", "23900:\tlearn: 0.9985573\ttest: 0.9976184\tbest: 0.9976184 (23900)\ttotal: 12m 18s\tremaining: 13m 26s\n", "24000:\tlearn: 0.9985581\ttest: 0.9976219\tbest: 0.9976219 (24000)\ttotal: 12m 21s\tremaining: 13m 22s\n", "24100:\tlearn: 0.9985581\ttest: 0.9976325\tbest: 0.9976325 (24100)\ttotal: 12m 25s\tremaining: 13m 21s\n", "24200:\tlearn: 0.9985644\ttest: 0.9976290\tbest: 0.9976325 (24100)\ttotal: 12m 28s\tremaining: 13m 17s\n", "24300:\tlearn: 0.9985640\ttest: 0.9976325\tbest: 0.9976325 (24100)\ttotal: 12m 30s\tremaining: 13m 13s\n", "24400:\tlearn: 0.9985683\ttest: 0.9976255\tbest: 0.9976325 (24100)\ttotal: 12m 33s\tremaining: 13m 10s\n", "24500:\tlearn: 0.9985714\ttest: 0.9976290\tbest: 0.9976325 (24100)\ttotal: 12m 37s\tremaining: 13m 7s\n", "24600:\tlearn: 0.9985706\ttest: 0.9976290\tbest: 0.9976325 (24100)\ttotal: 12m 40s\tremaining: 13m 4s\n", "24700:\tlearn: 0.9985746\ttest: 0.9976255\tbest: 0.9976325 (24100)\ttotal: 12m 42s\tremaining: 13m 1s\n", "24800:\tlearn: 0.9985777\ttest: 0.9976219\tbest: 0.9976325 (24100)\ttotal: 12m 45s\tremaining: 12m 57s\n", "24900:\tlearn: 0.9985789\ttest: 0.9976290\tbest: 0.9976325 (24100)\ttotal: 12m 48s\tremaining: 12m 54s\n", "25000:\tlearn: 0.9985801\ttest: 0.9976361\tbest: 0.9976361 (25000)\ttotal: 12m 52s\tremaining: 12m 52s\n", "25100:\tlearn: 0.9985840\ttest: 0.9976219\tbest: 0.9976361 (25000)\ttotal: 12m 55s\tremaining: 12m 48s\n", "25200:\tlearn: 0.9985832\ttest: 0.9976431\tbest: 0.9976431 (25200)\ttotal: 12m 57s\tremaining: 12m 45s\n", "25300:\tlearn: 0.9985879\ttest: 0.9976396\tbest: 0.9976431 (25200)\ttotal: 13m\tremaining: 12m 41s\n", "25400:\tlearn: 0.9985875\ttest: 0.9976361\tbest: 0.9976431 (25200)\ttotal: 13m 4s\tremaining: 12m 39s\n", "25500:\tlearn: 0.9985930\ttest: 0.9976290\tbest: 0.9976431 (25200)\ttotal: 13m 7s\tremaining: 12m 36s\n", "25600:\tlearn: 0.9985973\ttest: 0.9976325\tbest: 0.9976431 (25200)\ttotal: 13m 9s\tremaining: 12m 32s\n", "25700:\tlearn: 0.9985985\ttest: 0.9976431\tbest: 0.9976431 (25200)\ttotal: 13m 12s\tremaining: 12m 29s\n", "25800:\tlearn: 0.9986016\ttest: 0.9976361\tbest: 0.9976431 (25200)\ttotal: 13m 15s\tremaining: 12m 26s\n", "25900:\tlearn: 0.9986055\ttest: 0.9976466\tbest: 0.9976466 (25900)\ttotal: 13m 19s\tremaining: 12m 23s\n", "26000:\tlearn: 0.9986055\ttest: 0.9976466\tbest: 0.9976466 (25900)\ttotal: 13m 22s\tremaining: 12m 20s\n", "26100:\tlearn: 0.9986091\ttest: 0.9976537\tbest: 0.9976537 (26100)\ttotal: 13m 24s\tremaining: 12m 16s\n", "26200:\tlearn: 0.9986102\ttest: 0.9976466\tbest: 0.9976537 (26100)\ttotal: 13m 27s\tremaining: 12m 13s\n", "26300:\tlearn: 0.9986126\ttest: 0.9976572\tbest: 0.9976572 (26300)\ttotal: 13m 31s\tremaining: 12m 11s\n", "26400:\tlearn: 0.9986138\ttest: 0.9976466\tbest: 0.9976572 (26300)\ttotal: 13m 34s\tremaining: 12m 7s\n", "26500:\tlearn: 0.9986149\ttest: 0.9976466\tbest: 0.9976572 (26300)\ttotal: 13m 36s\tremaining: 12m 4s\n", "26600:\tlearn: 0.9986169\ttest: 0.9976502\tbest: 0.9976572 (26300)\ttotal: 13m 39s\tremaining: 12m\n", "26700:\tlearn: 0.9986212\ttest: 0.9976431\tbest: 0.9976572 (26300)\ttotal: 13m 43s\tremaining: 11m 58s\n", "26800:\tlearn: 0.9986232\ttest: 0.9976431\tbest: 0.9976572 (26300)\ttotal: 13m 46s\tremaining: 11m 55s\n", "26900:\tlearn: 0.9986224\ttest: 0.9976431\tbest: 0.9976572 (26300)\ttotal: 13m 49s\tremaining: 11m 51s\n", "27000:\tlearn: 0.9986255\ttest: 0.9976502\tbest: 0.9976572 (26300)\ttotal: 13m 51s\tremaining: 11m 48s\n", "27100:\tlearn: 0.9986271\ttest: 0.9976466\tbest: 0.9976572 (26300)\ttotal: 13m 54s\tremaining: 11m 45s\n", "27200:\tlearn: 0.9986295\ttest: 0.9976466\tbest: 0.9976572 (26300)\ttotal: 13m 58s\tremaining: 11m 43s\n", "27300:\tlearn: 0.9986330\ttest: 0.9976502\tbest: 0.9976572 (26300)\ttotal: 14m 1s\tremaining: 11m 39s\n", "27400:\tlearn: 0.9986326\ttest: 0.9976502\tbest: 0.9976572 (26300)\ttotal: 14m 3s\tremaining: 11m 36s\n", "27500:\tlearn: 0.9986345\ttest: 0.9976502\tbest: 0.9976572 (26300)\ttotal: 14m 6s\tremaining: 11m 32s\n", "27600:\tlearn: 0.9986389\ttest: 0.9976431\tbest: 0.9976572 (26300)\ttotal: 14m 11s\tremaining: 11m 30s\n", "27700:\tlearn: 0.9986393\ttest: 0.9976502\tbest: 0.9976572 (26300)\ttotal: 14m 13s\tremaining: 11m 27s\n", "27800:\tlearn: 0.9986420\ttest: 0.9976537\tbest: 0.9976572 (26300)\ttotal: 14m 16s\tremaining: 11m 23s\n", "27900:\tlearn: 0.9986420\ttest: 0.9976502\tbest: 0.9976572 (26300)\ttotal: 14m 18s\tremaining: 11m 20s\n", "28000:\tlearn: 0.9986440\ttest: 0.9976607\tbest: 0.9976607 (28000)\ttotal: 14m 22s\tremaining: 11m 17s\n", "28100:\tlearn: 0.9986444\ttest: 0.9976643\tbest: 0.9976643 (28100)\ttotal: 14m 25s\tremaining: 11m 14s\n", "28200:\tlearn: 0.9986487\ttest: 0.9976572\tbest: 0.9976643 (28100)\ttotal: 14m 28s\tremaining: 11m 11s\n", "28300:\tlearn: 0.9986514\ttest: 0.9976607\tbest: 0.9976643 (28100)\ttotal: 14m 31s\tremaining: 11m 7s\n", "28400:\tlearn: 0.9986538\ttest: 0.9976607\tbest: 0.9976643 (28100)\ttotal: 14m 33s\tremaining: 11m 4s\n", "28500:\tlearn: 0.9986557\ttest: 0.9976607\tbest: 0.9976643 (28100)\ttotal: 14m 38s\tremaining: 11m 2s\n", "28600:\tlearn: 0.9986596\ttest: 0.9976643\tbest: 0.9976643 (28100)\ttotal: 14m 40s\tremaining: 10m 58s\n", "28700:\tlearn: 0.9986616\ttest: 0.9976749\tbest: 0.9976749 (28700)\ttotal: 14m 43s\tremaining: 10m 55s\n", "28800:\tlearn: 0.9986640\ttest: 0.9976819\tbest: 0.9976819 (28800)\ttotal: 14m 45s\tremaining: 10m 52s\n", "28900:\tlearn: 0.9986655\ttest: 0.9976784\tbest: 0.9976819 (28800)\ttotal: 14m 50s\tremaining: 10m 50s\n", "29000:\tlearn: 0.9986667\ttest: 0.9976854\tbest: 0.9976854 (29000)\ttotal: 14m 53s\tremaining: 10m 46s\n", "29100:\tlearn: 0.9986667\ttest: 0.9976749\tbest: 0.9976854 (29000)\ttotal: 14m 55s\tremaining: 10m 43s\n", "29200:\tlearn: 0.9986667\ttest: 0.9976784\tbest: 0.9976854 (29000)\ttotal: 14m 58s\tremaining: 10m 39s\n", "29300:\tlearn: 0.9986706\ttest: 0.9976713\tbest: 0.9976854 (29000)\ttotal: 15m 1s\tremaining: 10m 36s\n", "29400:\tlearn: 0.9986730\ttest: 0.9976713\tbest: 0.9976854 (29000)\ttotal: 15m 5s\tremaining: 10m 34s\n", "29500:\tlearn: 0.9986741\ttest: 0.9976678\tbest: 0.9976854 (29000)\ttotal: 15m 7s\tremaining: 10m 30s\n", "29600:\tlearn: 0.9986765\ttest: 0.9976749\tbest: 0.9976854 (29000)\ttotal: 15m 10s\tremaining: 10m 27s\n", "29700:\tlearn: 0.9986773\ttest: 0.9976819\tbest: 0.9976854 (29000)\ttotal: 15m 13s\tremaining: 10m 24s\n", "29800:\tlearn: 0.9986792\ttest: 0.9976749\tbest: 0.9976854 (29000)\ttotal: 15m 17s\tremaining: 10m 21s\n", "29900:\tlearn: 0.9986781\ttest: 0.9976749\tbest: 0.9976854 (29000)\ttotal: 15m 20s\tremaining: 10m 18s\n", "30000:\tlearn: 0.9986812\ttest: 0.9976890\tbest: 0.9976890 (30000)\ttotal: 15m 22s\tremaining: 10m 15s\n", "30100:\tlearn: 0.9986820\ttest: 0.9976890\tbest: 0.9976890 (30000)\ttotal: 15m 25s\tremaining: 10m 11s\n", "30200:\tlearn: 0.9986859\ttest: 0.9976890\tbest: 0.9976890 (30000)\ttotal: 15m 29s\tremaining: 10m 9s\n", "30300:\tlearn: 0.9986883\ttest: 0.9976854\tbest: 0.9976890 (30000)\ttotal: 15m 32s\tremaining: 10m 6s\n", "30400:\tlearn: 0.9986910\ttest: 0.9976890\tbest: 0.9976890 (30000)\ttotal: 15m 34s\tremaining: 10m 2s\n", "30500:\tlearn: 0.9986918\ttest: 0.9976890\tbest: 0.9976890 (30000)\ttotal: 15m 37s\tremaining: 9m 59s\n", "30600:\tlearn: 0.9986949\ttest: 0.9976854\tbest: 0.9976890 (30000)\ttotal: 15m 40s\tremaining: 9m 56s\n", "30700:\tlearn: 0.9986953\ttest: 0.9976890\tbest: 0.9976890 (30000)\ttotal: 15m 44s\tremaining: 9m 53s\n", "30800:\tlearn: 0.9986957\ttest: 0.9976819\tbest: 0.9976890 (30000)\ttotal: 15m 47s\tremaining: 9m 50s\n", "30900:\tlearn: 0.9987000\ttest: 0.9976819\tbest: 0.9976890 (30000)\ttotal: 15m 49s\tremaining: 9m 47s\n", "31000:\tlearn: 0.9986985\ttest: 0.9976854\tbest: 0.9976890 (30000)\ttotal: 15m 52s\tremaining: 9m 43s\n", "31100:\tlearn: 0.9987020\ttest: 0.9976925\tbest: 0.9976925 (31100)\ttotal: 15m 56s\tremaining: 9m 41s\n", "31200:\tlearn: 0.9987012\ttest: 0.9976890\tbest: 0.9976925 (31100)\ttotal: 15m 59s\tremaining: 9m 38s\n", "31300:\tlearn: 0.9987028\ttest: 0.9976960\tbest: 0.9976960 (31300)\ttotal: 16m 2s\tremaining: 9m 34s\n", "31400:\tlearn: 0.9987032\ttest: 0.9976996\tbest: 0.9976996 (31400)\ttotal: 16m 4s\tremaining: 9m 31s\n", "31500:\tlearn: 0.9987035\ttest: 0.9976925\tbest: 0.9976996 (31400)\ttotal: 16m 8s\tremaining: 9m 28s\n", "31600:\tlearn: 0.9987063\ttest: 0.9976925\tbest: 0.9976996 (31400)\ttotal: 16m 11s\tremaining: 9m 25s\n", "31700:\tlearn: 0.9987090\ttest: 0.9976996\tbest: 0.9976996 (31400)\ttotal: 16m 14s\tremaining: 9m 22s\n", "31800:\tlearn: 0.9987090\ttest: 0.9976996\tbest: 0.9976996 (31400)\ttotal: 16m 16s\tremaining: 9m 19s\n", "31900:\tlearn: 0.9987130\ttest: 0.9977066\tbest: 0.9977066 (31900)\ttotal: 16m 19s\tremaining: 9m 15s\n", "32000:\tlearn: 0.9987161\ttest: 0.9977031\tbest: 0.9977066 (31900)\ttotal: 16m 23s\tremaining: 9m 13s\n", "32100:\tlearn: 0.9987169\ttest: 0.9976996\tbest: 0.9977066 (31900)\ttotal: 16m 26s\tremaining: 9m 9s\n", "32200:\tlearn: 0.9987181\ttest: 0.9977066\tbest: 0.9977066 (31900)\ttotal: 16m 28s\tremaining: 9m 6s\n", "32300:\tlearn: 0.9987228\ttest: 0.9977101\tbest: 0.9977101 (32300)\ttotal: 16m 31s\tremaining: 9m 3s\n", "32400:\tlearn: 0.9987228\ttest: 0.9977066\tbest: 0.9977101 (32300)\ttotal: 16m 35s\tremaining: 9m\n", "32500:\tlearn: 0.9987271\ttest: 0.9977101\tbest: 0.9977101 (32300)\ttotal: 16m 38s\tremaining: 8m 57s\n", "32600:\tlearn: 0.9987259\ttest: 0.9977101\tbest: 0.9977101 (32300)\ttotal: 16m 41s\tremaining: 8m 54s\n", "32700:\tlearn: 0.9987271\ttest: 0.9977031\tbest: 0.9977101 (32300)\ttotal: 16m 43s\tremaining: 8m 50s\n", "32800:\tlearn: 0.9987282\ttest: 0.9977031\tbest: 0.9977101 (32300)\ttotal: 16m 47s\tremaining: 8m 48s\n", "32900:\tlearn: 0.9987322\ttest: 0.9977031\tbest: 0.9977101 (32300)\ttotal: 16m 50s\tremaining: 8m 45s\n", "33000:\tlearn: 0.9987333\ttest: 0.9977031\tbest: 0.9977101 (32300)\ttotal: 16m 53s\tremaining: 8m 41s\n", "33100:\tlearn: 0.9987349\ttest: 0.9976996\tbest: 0.9977101 (32300)\ttotal: 16m 55s\tremaining: 8m 38s\n", "33200:\tlearn: 0.9987361\ttest: 0.9977066\tbest: 0.9977101 (32300)\ttotal: 16m 58s\tremaining: 8m 35s\n", "33300:\tlearn: 0.9987365\ttest: 0.9977137\tbest: 0.9977137 (33300)\ttotal: 17m 3s\tremaining: 8m 33s\n", "33400:\tlearn: 0.9987373\ttest: 0.9977101\tbest: 0.9977137 (33300)\ttotal: 17m 5s\tremaining: 8m 29s\n", "33500:\tlearn: 0.9987400\ttest: 0.9977066\tbest: 0.9977137 (33300)\ttotal: 17m 8s\tremaining: 8m 26s\n", "33600:\tlearn: 0.9987400\ttest: 0.9977066\tbest: 0.9977137 (33300)\ttotal: 17m 10s\tremaining: 8m 23s\n", "33700:\tlearn: 0.9987420\ttest: 0.9977137\tbest: 0.9977137 (33300)\ttotal: 17m 14s\tremaining: 8m 20s\n", "33800:\tlearn: 0.9987431\ttest: 0.9977207\tbest: 0.9977207 (33800)\ttotal: 17m 17s\tremaining: 8m 17s\n", "33900:\tlearn: 0.9987451\ttest: 0.9977207\tbest: 0.9977207 (33800)\ttotal: 17m 20s\tremaining: 8m 14s\n", "34000:\tlearn: 0.9987443\ttest: 0.9977243\tbest: 0.9977243 (34000)\ttotal: 17m 23s\tremaining: 8m 10s\n", "34100:\tlearn: 0.9987467\ttest: 0.9977243\tbest: 0.9977243 (34000)\ttotal: 17m 25s\tremaining: 8m 7s\n", "34200:\tlearn: 0.9987463\ttest: 0.9977243\tbest: 0.9977243 (34000)\ttotal: 17m 30s\tremaining: 8m 5s\n", "34300:\tlearn: 0.9987490\ttest: 0.9977278\tbest: 0.9977278 (34300)\ttotal: 17m 32s\tremaining: 8m 1s\n", "34400:\tlearn: 0.9987510\ttest: 0.9977243\tbest: 0.9977278 (34300)\ttotal: 17m 35s\tremaining: 7m 58s\n", "34500:\tlearn: 0.9987526\ttest: 0.9977348\tbest: 0.9977348 (34500)\ttotal: 17m 37s\tremaining: 7m 55s\n", "34600:\tlearn: 0.9987545\ttest: 0.9977348\tbest: 0.9977348 (34500)\ttotal: 17m 42s\tremaining: 7m 52s\n", "34700:\tlearn: 0.9987557\ttest: 0.9977348\tbest: 0.9977348 (34500)\ttotal: 17m 45s\tremaining: 7m 49s\n", "34800:\tlearn: 0.9987584\ttest: 0.9977313\tbest: 0.9977348 (34500)\ttotal: 17m 47s\tremaining: 7m 46s\n", "34900:\tlearn: 0.9987573\ttest: 0.9977243\tbest: 0.9977348 (34500)\ttotal: 17m 50s\tremaining: 7m 42s\n", "35000:\tlearn: 0.9987584\ttest: 0.9977278\tbest: 0.9977348 (34500)\ttotal: 17m 53s\tremaining: 7m 40s\n", "35100:\tlearn: 0.9987584\ttest: 0.9977313\tbest: 0.9977348 (34500)\ttotal: 17m 57s\tremaining: 7m 37s\n", "35200:\tlearn: 0.9987608\ttest: 0.9977313\tbest: 0.9977348 (34500)\ttotal: 17m 59s\tremaining: 7m 33s\n", "35300:\tlearn: 0.9987639\ttest: 0.9977384\tbest: 0.9977384 (35300)\ttotal: 18m 2s\tremaining: 7m 30s\n", "35400:\tlearn: 0.9987674\ttest: 0.9977348\tbest: 0.9977384 (35300)\ttotal: 18m 5s\tremaining: 7m 27s\n", "35500:\tlearn: 0.9987706\ttest: 0.9977348\tbest: 0.9977384 (35300)\ttotal: 18m 9s\tremaining: 7m 24s\n", "35600:\tlearn: 0.9987714\ttest: 0.9977313\tbest: 0.9977384 (35300)\ttotal: 18m 12s\tremaining: 7m 21s\n", "35700:\tlearn: 0.9987729\ttest: 0.9977313\tbest: 0.9977384 (35300)\ttotal: 18m 14s\tremaining: 7m 18s\n", "35800:\tlearn: 0.9987753\ttest: 0.9977243\tbest: 0.9977384 (35300)\ttotal: 18m 17s\tremaining: 7m 15s\n", "35900:\tlearn: 0.9987741\ttest: 0.9977243\tbest: 0.9977384 (35300)\ttotal: 18m 21s\tremaining: 7m 12s\n", "36000:\tlearn: 0.9987737\ttest: 0.9977313\tbest: 0.9977384 (35300)\ttotal: 18m 24s\tremaining: 7m 9s\n", "36100:\tlearn: 0.9987784\ttest: 0.9977313\tbest: 0.9977384 (35300)\ttotal: 18m 26s\tremaining: 7m 6s\n", "36200:\tlearn: 0.9987761\ttest: 0.9977243\tbest: 0.9977384 (35300)\ttotal: 18m 29s\tremaining: 7m 2s\n", "36300:\tlearn: 0.9987808\ttest: 0.9977313\tbest: 0.9977384 (35300)\ttotal: 18m 32s\tremaining: 6m 59s\n", "36400:\tlearn: 0.9987765\ttest: 0.9977348\tbest: 0.9977384 (35300)\ttotal: 18m 36s\tremaining: 6m 57s\n", "36500:\tlearn: 0.9987780\ttest: 0.9977348\tbest: 0.9977384 (35300)\ttotal: 18m 39s\tremaining: 6m 53s\n", "36600:\tlearn: 0.9987800\ttest: 0.9977348\tbest: 0.9977384 (35300)\ttotal: 18m 41s\tremaining: 6m 50s\n", "36700:\tlearn: 0.9987812\ttest: 0.9977278\tbest: 0.9977384 (35300)\ttotal: 18m 44s\tremaining: 6m 47s\n", "36800:\tlearn: 0.9987812\ttest: 0.9977348\tbest: 0.9977384 (35300)\ttotal: 18m 48s\tremaining: 6m 44s\n", "36900:\tlearn: 0.9987835\ttest: 0.9977313\tbest: 0.9977384 (35300)\ttotal: 18m 51s\tremaining: 6m 41s\n", "37000:\tlearn: 0.9987855\ttest: 0.9977384\tbest: 0.9977384 (35300)\ttotal: 18m 53s\tremaining: 6m 38s\n", "37100:\tlearn: 0.9987878\ttest: 0.9977384\tbest: 0.9977384 (35300)\ttotal: 18m 56s\tremaining: 6m 35s\n", "37200:\tlearn: 0.9987914\ttest: 0.9977419\tbest: 0.9977419 (37200)\ttotal: 19m\tremaining: 6m 32s\n", "37300:\tlearn: 0.9987929\ttest: 0.9977384\tbest: 0.9977419 (37200)\ttotal: 19m 3s\tremaining: 6m 29s\n", "37400:\tlearn: 0.9987937\ttest: 0.9977454\tbest: 0.9977454 (37400)\ttotal: 19m 6s\tremaining: 6m 26s\n", "37500:\tlearn: 0.9987949\ttest: 0.9977454\tbest: 0.9977454 (37400)\ttotal: 19m 8s\tremaining: 6m 22s\n", "37600:\tlearn: 0.9987965\ttest: 0.9977348\tbest: 0.9977454 (37400)\ttotal: 19m 11s\tremaining: 6m 19s\n", "37700:\tlearn: 0.9987965\ttest: 0.9977419\tbest: 0.9977454 (37400)\ttotal: 19m 15s\tremaining: 6m 17s\n", "37800:\tlearn: 0.9988008\ttest: 0.9977490\tbest: 0.9977490 (37800)\ttotal: 19m 18s\tremaining: 6m 13s\n", "37900:\tlearn: 0.9988016\ttest: 0.9977454\tbest: 0.9977490 (37800)\ttotal: 19m 20s\tremaining: 6m 10s\n", "38000:\tlearn: 0.9988023\ttest: 0.9977419\tbest: 0.9977490 (37800)\ttotal: 19m 23s\tremaining: 6m 7s\n", "38100:\tlearn: 0.9988027\ttest: 0.9977490\tbest: 0.9977490 (37800)\ttotal: 19m 27s\tremaining: 6m 4s\n", "38200:\tlearn: 0.9988035\ttest: 0.9977490\tbest: 0.9977490 (37800)\ttotal: 19m 30s\tremaining: 6m 1s\n", "38300:\tlearn: 0.9988023\ttest: 0.9977490\tbest: 0.9977490 (37800)\ttotal: 19m 33s\tremaining: 5m 58s\n", "38400:\tlearn: 0.9988043\ttest: 0.9977560\tbest: 0.9977560 (38400)\ttotal: 19m 35s\tremaining: 5m 55s\n", "38500:\tlearn: 0.9988063\ttest: 0.9977560\tbest: 0.9977560 (38400)\ttotal: 19m 39s\tremaining: 5m 52s\n", "38600:\tlearn: 0.9988094\ttest: 0.9977560\tbest: 0.9977560 (38400)\ttotal: 19m 42s\tremaining: 5m 49s\n", "38700:\tlearn: 0.9988106\ttest: 0.9977631\tbest: 0.9977631 (38700)\ttotal: 19m 45s\tremaining: 5m 46s\n", "38800:\tlearn: 0.9988125\ttest: 0.9977490\tbest: 0.9977631 (38700)\ttotal: 19m 47s\tremaining: 5m 42s\n", "38900:\tlearn: 0.9988141\ttest: 0.9977560\tbest: 0.9977631 (38700)\ttotal: 19m 50s\tremaining: 5m 39s\n", "39000:\tlearn: 0.9988165\ttest: 0.9977595\tbest: 0.9977631 (38700)\ttotal: 19m 54s\tremaining: 5m 36s\n", "39100:\tlearn: 0.9988153\ttest: 0.9977560\tbest: 0.9977631 (38700)\ttotal: 19m 57s\tremaining: 5m 33s\n", "39200:\tlearn: 0.9988168\ttest: 0.9977560\tbest: 0.9977631 (38700)\ttotal: 20m\tremaining: 5m 30s\n", "39300:\tlearn: 0.9988184\ttest: 0.9977560\tbest: 0.9977631 (38700)\ttotal: 20m 2s\tremaining: 5m 27s\n", "39400:\tlearn: 0.9988200\ttest: 0.9977595\tbest: 0.9977631 (38700)\ttotal: 20m 7s\tremaining: 5m 24s\n", "39500:\tlearn: 0.9988223\ttest: 0.9977631\tbest: 0.9977631 (38700)\ttotal: 20m 9s\tremaining: 5m 21s\n", "39600:\tlearn: 0.9988239\ttest: 0.9977595\tbest: 0.9977631 (38700)\ttotal: 20m 12s\tremaining: 5m 18s\n", "39700:\tlearn: 0.9988243\ttest: 0.9977701\tbest: 0.9977701 (39700)\ttotal: 20m 14s\tremaining: 5m 15s\n", "39800:\tlearn: 0.9988251\ttest: 0.9977737\tbest: 0.9977737 (39800)\ttotal: 20m 18s\tremaining: 5m 12s\n", "39900:\tlearn: 0.9988247\ttest: 0.9977737\tbest: 0.9977737 (39800)\ttotal: 20m 21s\tremaining: 5m 9s\n", "40000:\tlearn: 0.9988263\ttest: 0.9977737\tbest: 0.9977737 (39800)\ttotal: 20m 24s\tremaining: 5m 6s\n", "40100:\tlearn: 0.9988290\ttest: 0.9977772\tbest: 0.9977772 (40100)\ttotal: 20m 27s\tremaining: 5m 2s\n", "40200:\tlearn: 0.9988286\ttest: 0.9977842\tbest: 0.9977842 (40200)\ttotal: 20m 29s\tremaining: 4m 59s\n", "40300:\tlearn: 0.9988286\ttest: 0.9977772\tbest: 0.9977842 (40200)\ttotal: 20m 34s\tremaining: 4m 57s\n", "40400:\tlearn: 0.9988321\ttest: 0.9977701\tbest: 0.9977842 (40200)\ttotal: 20m 36s\tremaining: 4m 53s\n", "40500:\tlearn: 0.9988333\ttest: 0.9977772\tbest: 0.9977842 (40200)\ttotal: 20m 39s\tremaining: 4m 50s\n", "40600:\tlearn: 0.9988329\ttest: 0.9977701\tbest: 0.9977842 (40200)\ttotal: 20m 41s\tremaining: 4m 47s\n", "40700:\tlearn: 0.9988329\ttest: 0.9977772\tbest: 0.9977842 (40200)\ttotal: 20m 46s\tremaining: 4m 44s\n", "40800:\tlearn: 0.9988341\ttest: 0.9977737\tbest: 0.9977842 (40200)\ttotal: 20m 48s\tremaining: 4m 41s\n", "40900:\tlearn: 0.9988357\ttest: 0.9977737\tbest: 0.9977842 (40200)\ttotal: 20m 51s\tremaining: 4m 38s\n", "41000:\tlearn: 0.9988364\ttest: 0.9977737\tbest: 0.9977842 (40200)\ttotal: 20m 54s\tremaining: 4m 35s\n", "41100:\tlearn: 0.9988368\ttest: 0.9977772\tbest: 0.9977842 (40200)\ttotal: 20m 56s\tremaining: 4m 32s\n", "41200:\tlearn: 0.9988364\ttest: 0.9977772\tbest: 0.9977842 (40200)\ttotal: 21m 1s\tremaining: 4m 29s\n", "41300:\tlearn: 0.9988380\ttest: 0.9977772\tbest: 0.9977842 (40200)\ttotal: 21m 3s\tremaining: 4m 26s\n", "41400:\tlearn: 0.9988412\ttest: 0.9977701\tbest: 0.9977842 (40200)\ttotal: 21m 6s\tremaining: 4m 23s\n", "41500:\tlearn: 0.9988412\ttest: 0.9977701\tbest: 0.9977842 (40200)\ttotal: 21m 8s\tremaining: 4m 19s\n", "41600:\tlearn: 0.9988412\ttest: 0.9977772\tbest: 0.9977842 (40200)\ttotal: 21m 13s\tremaining: 4m 17s\n", "41700:\tlearn: 0.9988443\ttest: 0.9977772\tbest: 0.9977842 (40200)\ttotal: 21m 15s\tremaining: 4m 13s\n", "41800:\tlearn: 0.9988455\ttest: 0.9977807\tbest: 0.9977842 (40200)\ttotal: 21m 18s\tremaining: 4m 10s\n", "41900:\tlearn: 0.9988470\ttest: 0.9977772\tbest: 0.9977842 (40200)\ttotal: 21m 21s\tremaining: 4m 7s\n", "42000:\tlearn: 0.9988482\ttest: 0.9977842\tbest: 0.9977842 (40200)\ttotal: 21m 24s\tremaining: 4m 4s\n", "42100:\tlearn: 0.9988482\ttest: 0.9977807\tbest: 0.9977842 (40200)\ttotal: 21m 28s\tremaining: 4m 1s\n", "42200:\tlearn: 0.9988494\ttest: 0.9977807\tbest: 0.9977842 (40200)\ttotal: 21m 30s\tremaining: 3m 58s\n", "42300:\tlearn: 0.9988506\ttest: 0.9977878\tbest: 0.9977878 (42300)\ttotal: 21m 33s\tremaining: 3m 55s\n", "42400:\tlearn: 0.9988553\ttest: 0.9977878\tbest: 0.9977878 (42300)\ttotal: 21m 36s\tremaining: 3m 52s\n", "42500:\tlearn: 0.9988553\ttest: 0.9977878\tbest: 0.9977878 (42300)\ttotal: 21m 40s\tremaining: 3m 49s\n", "42600:\tlearn: 0.9988568\ttest: 0.9977984\tbest: 0.9977984 (42600)\ttotal: 21m 43s\tremaining: 3m 46s\n", "42700:\tlearn: 0.9988564\ttest: 0.9977948\tbest: 0.9977984 (42600)\ttotal: 21m 45s\tremaining: 3m 43s\n", "42800:\tlearn: 0.9988568\ttest: 0.9977878\tbest: 0.9977984 (42600)\ttotal: 21m 48s\tremaining: 3m 40s\n", "42900:\tlearn: 0.9988600\ttest: 0.9977878\tbest: 0.9977984 (42600)\ttotal: 21m 52s\tremaining: 3m 37s\n", "43000:\tlearn: 0.9988604\ttest: 0.9978019\tbest: 0.9978019 (43000)\ttotal: 21m 55s\tremaining: 3m 34s\n", "43100:\tlearn: 0.9988600\ttest: 0.9977948\tbest: 0.9978019 (43000)\ttotal: 21m 57s\tremaining: 3m 30s\n", "43200:\tlearn: 0.9988647\ttest: 0.9977948\tbest: 0.9978019 (43000)\ttotal: 22m\tremaining: 3m 27s\n", "43300:\tlearn: 0.9988658\ttest: 0.9977948\tbest: 0.9978019 (43000)\ttotal: 22m 3s\tremaining: 3m 24s\n", "43400:\tlearn: 0.9988651\ttest: 0.9977984\tbest: 0.9978019 (43000)\ttotal: 22m 7s\tremaining: 3m 21s\n", "43500:\tlearn: 0.9988651\ttest: 0.9977948\tbest: 0.9978019 (43000)\ttotal: 22m 9s\tremaining: 3m 18s\n", "43600:\tlearn: 0.9988686\ttest: 0.9977878\tbest: 0.9978019 (43000)\ttotal: 22m 12s\tremaining: 3m 15s\n", "43700:\tlearn: 0.9988686\ttest: 0.9977878\tbest: 0.9978019 (43000)\ttotal: 22m 15s\tremaining: 3m 12s\n", "43800:\tlearn: 0.9988702\ttest: 0.9977948\tbest: 0.9978019 (43000)\ttotal: 22m 19s\tremaining: 3m 9s\n", "43900:\tlearn: 0.9988717\ttest: 0.9977948\tbest: 0.9978019 (43000)\ttotal: 22m 22s\tremaining: 3m 6s\n", "44000:\tlearn: 0.9988709\ttest: 0.9977913\tbest: 0.9978019 (43000)\ttotal: 22m 24s\tremaining: 3m 3s\n", "44100:\tlearn: 0.9988717\ttest: 0.9977984\tbest: 0.9978019 (43000)\ttotal: 22m 27s\tremaining: 3m\n", "44200:\tlearn: 0.9988733\ttest: 0.9978019\tbest: 0.9978019 (43000)\ttotal: 22m 31s\tremaining: 2m 57s\n", "44300:\tlearn: 0.9988753\ttest: 0.9977984\tbest: 0.9978019 (43000)\ttotal: 22m 34s\tremaining: 2m 54s\n", "44400:\tlearn: 0.9988753\ttest: 0.9978019\tbest: 0.9978019 (43000)\ttotal: 22m 37s\tremaining: 2m 51s\n", "44500:\tlearn: 0.9988768\ttest: 0.9978019\tbest: 0.9978019 (43000)\ttotal: 22m 39s\tremaining: 2m 48s\n", "44600:\tlearn: 0.9988753\ttest: 0.9978054\tbest: 0.9978054 (44600)\ttotal: 22m 42s\tremaining: 2m 44s\n", "44700:\tlearn: 0.9988776\ttest: 0.9978054\tbest: 0.9978054 (44600)\ttotal: 22m 46s\tremaining: 2m 42s\n", "44800:\tlearn: 0.9988807\ttest: 0.9978054\tbest: 0.9978054 (44600)\ttotal: 22m 49s\tremaining: 2m 38s\n", "44900:\tlearn: 0.9988788\ttest: 0.9978089\tbest: 0.9978089 (44900)\ttotal: 22m 51s\tremaining: 2m 35s\n", "45000:\tlearn: 0.9988815\ttest: 0.9978019\tbest: 0.9978089 (44900)\ttotal: 22m 54s\tremaining: 2m 32s\n", "45100:\tlearn: 0.9988807\ttest: 0.9977984\tbest: 0.9978089 (44900)\ttotal: 22m 58s\tremaining: 2m 29s\n", "45200:\tlearn: 0.9988811\ttest: 0.9977984\tbest: 0.9978089 (44900)\ttotal: 23m 1s\tremaining: 2m 26s\n", "45300:\tlearn: 0.9988815\ttest: 0.9978019\tbest: 0.9978089 (44900)\ttotal: 23m 3s\tremaining: 2m 23s\n", "45400:\tlearn: 0.9988823\ttest: 0.9978054\tbest: 0.9978089 (44900)\ttotal: 23m 6s\tremaining: 2m 20s\n", "45500:\tlearn: 0.9988823\ttest: 0.9978089\tbest: 0.9978089 (44900)\ttotal: 23m 9s\tremaining: 2m 17s\n", "45600:\tlearn: 0.9988823\ttest: 0.9978125\tbest: 0.9978125 (45600)\ttotal: 23m 13s\tremaining: 2m 14s\n", "45700:\tlearn: 0.9988862\ttest: 0.9978089\tbest: 0.9978125 (45600)\ttotal: 23m 16s\tremaining: 2m 11s\n", "45800:\tlearn: 0.9988847\ttest: 0.9978089\tbest: 0.9978125 (45600)\ttotal: 23m 18s\tremaining: 2m 8s\n", "45900:\tlearn: 0.9988870\ttest: 0.9978089\tbest: 0.9978125 (45600)\ttotal: 23m 21s\tremaining: 2m 5s\n", "46000:\tlearn: 0.9988882\ttest: 0.9978089\tbest: 0.9978125 (45600)\ttotal: 23m 25s\tremaining: 2m 2s\n", "46100:\tlearn: 0.9988902\ttest: 0.9978089\tbest: 0.9978125 (45600)\ttotal: 23m 28s\tremaining: 1m 59s\n", "46200:\tlearn: 0.9988905\ttest: 0.9978089\tbest: 0.9978125 (45600)\ttotal: 23m 30s\tremaining: 1m 56s\n", "46300:\tlearn: 0.9988909\ttest: 0.9978125\tbest: 0.9978125 (45600)\ttotal: 23m 33s\tremaining: 1m 52s\n", "46400:\tlearn: 0.9988905\ttest: 0.9978089\tbest: 0.9978125 (45600)\ttotal: 23m 37s\tremaining: 1m 49s\n", "46500:\tlearn: 0.9988925\ttest: 0.9978125\tbest: 0.9978125 (45600)\ttotal: 23m 40s\tremaining: 1m 46s\n", "46600:\tlearn: 0.9988941\ttest: 0.9978160\tbest: 0.9978160 (46600)\ttotal: 23m 43s\tremaining: 1m 43s\n", "46700:\tlearn: 0.9988949\ttest: 0.9978160\tbest: 0.9978160 (46600)\ttotal: 23m 45s\tremaining: 1m 40s\n", "46800:\tlearn: 0.9988988\ttest: 0.9978195\tbest: 0.9978195 (46800)\ttotal: 23m 48s\tremaining: 1m 37s\n", "46900:\tlearn: 0.9989000\ttest: 0.9978160\tbest: 0.9978195 (46800)\ttotal: 23m 52s\tremaining: 1m 34s\n", "47000:\tlearn: 0.9989011\ttest: 0.9978160\tbest: 0.9978195 (46800)\ttotal: 23m 55s\tremaining: 1m 31s\n", "47100:\tlearn: 0.9989007\ttest: 0.9978089\tbest: 0.9978195 (46800)\ttotal: 23m 58s\tremaining: 1m 28s\n", "47200:\tlearn: 0.9989019\ttest: 0.9978160\tbest: 0.9978195 (46800)\ttotal: 24m\tremaining: 1m 25s\n", "47300:\tlearn: 0.9989051\ttest: 0.9978160\tbest: 0.9978195 (46800)\ttotal: 24m 4s\tremaining: 1m 22s\n", "47400:\tlearn: 0.9989051\ttest: 0.9978195\tbest: 0.9978195 (46800)\ttotal: 24m 7s\tremaining: 1m 19s\n", "47500:\tlearn: 0.9989074\ttest: 0.9978195\tbest: 0.9978195 (46800)\ttotal: 24m 10s\tremaining: 1m 16s\n", "47600:\tlearn: 0.9989066\ttest: 0.9978089\tbest: 0.9978195 (46800)\ttotal: 24m 12s\tremaining: 1m 13s\n", "47700:\tlearn: 0.9989074\ttest: 0.9978195\tbest: 0.9978195 (46800)\ttotal: 24m 16s\tremaining: 1m 10s\n", "47800:\tlearn: 0.9989086\ttest: 0.9978125\tbest: 0.9978195 (46800)\ttotal: 24m 19s\tremaining: 1m 7s\n", "47900:\tlearn: 0.9989086\ttest: 0.9978266\tbest: 0.9978266 (47900)\ttotal: 24m 22s\tremaining: 1m 4s\n", "48000:\tlearn: 0.9989098\ttest: 0.9978266\tbest: 0.9978266 (47900)\ttotal: 24m 24s\tremaining: 1m\n", "48100:\tlearn: 0.9989117\ttest: 0.9978301\tbest: 0.9978301 (48100)\ttotal: 24m 27s\tremaining: 57.9s\n", "48200:\tlearn: 0.9989129\ttest: 0.9978301\tbest: 0.9978301 (48100)\ttotal: 24m 31s\tremaining: 54.9s\n", "48300:\tlearn: 0.9989152\ttest: 0.9978336\tbest: 0.9978336 (48300)\ttotal: 24m 34s\tremaining: 51.9s\n", "48400:\tlearn: 0.9989152\ttest: 0.9978301\tbest: 0.9978336 (48300)\ttotal: 24m 36s\tremaining: 48.8s\n", "48500:\tlearn: 0.9989149\ttest: 0.9978301\tbest: 0.9978336 (48300)\ttotal: 24m 39s\tremaining: 45.7s\n", "48600:\tlearn: 0.9989172\ttest: 0.9978230\tbest: 0.9978336 (48300)\ttotal: 24m 43s\tremaining: 42.7s\n", "48700:\tlearn: 0.9989180\ttest: 0.9978301\tbest: 0.9978336 (48300)\ttotal: 24m 46s\tremaining: 39.6s\n", "48800:\tlearn: 0.9989184\ttest: 0.9978301\tbest: 0.9978336 (48300)\ttotal: 24m 48s\tremaining: 36.6s\n", "48900:\tlearn: 0.9989188\ttest: 0.9978230\tbest: 0.9978336 (48300)\ttotal: 24m 51s\tremaining: 33.5s\n", "49000:\tlearn: 0.9989192\ttest: 0.9978230\tbest: 0.9978336 (48300)\ttotal: 24m 54s\tremaining: 30.5s\n", "49100:\tlearn: 0.9989196\ttest: 0.9978266\tbest: 0.9978336 (48300)\ttotal: 24m 58s\tremaining: 27.4s\n", "49200:\tlearn: 0.9989211\ttest: 0.9978230\tbest: 0.9978336 (48300)\ttotal: 25m\tremaining: 24.4s\n", "49300:\tlearn: 0.9989219\ttest: 0.9978266\tbest: 0.9978336 (48300)\ttotal: 25m 3s\tremaining: 21.3s\n", "49400:\tlearn: 0.9989227\ttest: 0.9978301\tbest: 0.9978336 (48300)\ttotal: 25m 5s\tremaining: 18.3s\n", "49500:\tlearn: 0.9989247\ttest: 0.9978336\tbest: 0.9978336 (48300)\ttotal: 25m 10s\tremaining: 15.2s\n", "49600:\tlearn: 0.9989247\ttest: 0.9978372\tbest: 0.9978372 (49600)\ttotal: 25m 12s\tremaining: 12.2s\n", "49700:\tlearn: 0.9989254\ttest: 0.9978372\tbest: 0.9978372 (49600)\ttotal: 25m 15s\tremaining: 9.12s\n", "49800:\tlearn: 0.9989278\ttest: 0.9978372\tbest: 0.9978372 (49600)\ttotal: 25m 18s\tremaining: 6.07s\n", "49900:\tlearn: 0.9989290\ttest: 0.9978372\tbest: 0.9978372 (49600)\ttotal: 25m 21s\tremaining: 3.02s\n", "49999:\tlearn: 0.9989290\ttest: 0.9978372\tbest: 0.9978372 (49600)\ttotal: 25m 25s\tremaining: 0us\n", "bestTest = 0.9978371627\n", "bestIteration = 49600\n", "Shrink model to first 49601 iterations.\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ "" ] }, "metadata": {}, "execution_count": 33 } ], "source": [ "model = CatBoostClassifier(iterations = 50000,\n", " random_state = 69,\n", " loss_function = \"MultiClass\",\n", " eval_metric= 'Accuracy',\n", " cat_features = cat_cols,\n", " metric_period=100,\n", " task_type = 'GPU'\n", " )\n", "\n", "model.fit(X_train, y_train, plot=True, eval_set = (X_test, y_test))" ] }, { "cell_type": "code", "source": [ "model.get_feature_importance(prettified=True)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 519 }, "id": "jy8HlsPfl1U3", "outputId": "c088c271-00d8-4206-c489-534726171752" }, "execution_count": 34, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " Feature Id Importances\n", "0 Электросистема. Напряжение 24.613057\n", "1 ДВС. Температура охлаждающей жидкости 11.264609\n", "2 КПП. Температура масла 9.729970\n", "3 Полож.пед.акселер.,% 9.218025\n", "4 КПП. Давление масла в системе смазки 9.029200\n", "5 Значение счетчика моточасов, час:мин 8.972413\n", "6 Давление в пневмостистеме (spn46), кПа 7.963685\n", "7 ДВС. Частота вращения коленчатого вала 5.222944\n", "8 ДВС. Давление смазки 4.144133\n", "9 Скорость 3.523335\n", "10 Обор.двиг.,об/мин 3.405608\n", "11 Давл.масла двиг.,кПа 2.508649\n", "12 Темп.масла двиг.,°С 0.336934\n", "13 Уровень топлива % (spn96) 0.067439\n", "14 Сост.пед.сцепл. 0.000000" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Feature IdImportances
0Электросистема. Напряжение24.613057
1ДВС. Температура охлаждающей жидкости11.264609
2КПП. Температура масла9.729970
3Полож.пед.акселер.,%9.218025
4КПП. Давление масла в системе смазки9.029200
5Значение счетчика моточасов, час:мин8.972413
6Давление в пневмостистеме (spn46), кПа7.963685
7ДВС. Частота вращения коленчатого вала5.222944
8ДВС. Давление смазки4.144133
9Скорость3.523335
10Обор.двиг.,об/мин3.405608
11Давл.масла двиг.,кПа2.508649
12Темп.масла двиг.,°С0.336934
13Уровень топлива % (spn96)0.067439
14Сост.пед.сцепл.0.000000
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "summary": "{\n \"name\": \"model\",\n \"rows\": 15,\n \"fields\": [\n {\n \"column\": \"Feature Id\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 15,\n \"samples\": [\n \"\\u0421\\u043a\\u043e\\u0440\\u043e\\u0441\\u0442\\u044c\",\n \"\\u0414\\u0430\\u0432\\u043b.\\u043c\\u0430\\u0441\\u043b\\u0430 \\u0434\\u0432\\u0438\\u0433.,\\u043a\\u041f\\u0430\",\n \"\\u042d\\u043b\\u0435\\u043a\\u0442\\u0440\\u043e\\u0441\\u0438\\u0441\\u0442\\u0435\\u043c\\u0430. \\u041d\\u0430\\u043f\\u0440\\u044f\\u0436\\u0435\\u043d\\u0438\\u0435\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Importances\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 6.244992095991776,\n \"min\": 0.0,\n \"max\": 24.613056972318837,\n \"num_unique_values\": 15,\n \"samples\": [\n 3.523334606678383,\n 2.508648510708203,\n 24.613056972318837\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" } }, "metadata": {}, "execution_count": 34 } ] }, { "cell_type": "code", "source": [ "model.save_model('model.cbm', format=\"cbm\")" ], "metadata": { "id": "2ufSFpjLmdkM" }, "execution_count": 35, "outputs": [] }, { "cell_type": "code", "source": [ "X_test['result'] = model.predict(X_test)" ], "metadata": { "id": "q6zORyscmj-w" }, "execution_count": 36, "outputs": [] }, { "cell_type": "code", "source": [ "X_test['result_true'] = y_test" ], "metadata": { "id": "aCXzyqb7ncrD" }, "execution_count": 37, "outputs": [] }, { "cell_type": "code", "source": [ "X_test" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 513 }, "id": "gr-2fbRtns-j", "outputId": "b717482e-c571-4a30-b452-4a4b051a1f82" }, "execution_count": 38, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " Полож.пед.акселер.,% Давл.масла двиг.,кПа Темп.масла двиг.,°С \\\n", "1366103 0.0 260.0 NaN \n", "120095 0.0 328.0 NaN \n", "74306 94.8 508.0 NaN \n", "1277480 94.8 460.0 NaN \n", "1796794 94.8 500.0 NaN \n", "... ... ... ... \n", "1854601 56.4 412.0 NaN \n", "1054544 0.0 240.0 NaN \n", "299541 0.0 188.0 NaN \n", "252207 0.0 240.0 NaN \n", "1741218 0.0 140.0 NaN \n", "\n", " Обор.двиг.,об/мин Значение счетчика моточасов, час:мин \\\n", "1366103 955.375 NaN \n", "120095 1385.000 16618.0 \n", "74306 1914.750 53730.0 \n", "1277480 1924.125 NaN \n", "1796794 1903.875 287954.0 \n", "... ... ... \n", "1854601 1437.750 295936.0 \n", "1054544 970.750 NaN \n", "299541 701.125 338000.0 \n", "252207 647.500 NaN \n", "1741218 651.625 334600.0 \n", "\n", " Сост.пед.сцепл. КПП. Температура масла \\\n", "1366103 1.0 NaN \n", "120095 1.0 NaN \n", "74306 1.0 NaN \n", "1277480 1.0 NaN \n", "1796794 1.0 NaN \n", "... ... ... \n", "1854601 1.0 NaN \n", "1054544 1.0 NaN \n", "299541 1.0 NaN \n", "252207 1.0 NaN \n", "1741218 1.0 NaN \n", "\n", " КПП. Давление масла в системе смазки Скорость ДВС. Давление смазки \\\n", "1366103 1248.0 0.0 260.0 \n", "120095 1216.0 0.0 328.0 \n", "74306 1200.0 0.0 508.0 \n", "1277480 1280.0 10.5 460.0 \n", "1796794 1248.0 0.0 500.0 \n", "... ... ... ... \n", "1854601 1216.0 0.0 412.0 \n", "1054544 1248.0 0.0 240.0 \n", "299541 1200.0 0.0 188.0 \n", "252207 1200.0 NaN 240.0 \n", "1741218 1216.0 0.0 140.0 \n", "\n", " ДВС. Температура охлаждающей жидкости \\\n", "1366103 72.0 \n", "120095 84.0 \n", "74306 81.0 \n", "1277480 75.0 \n", "1796794 77.0 \n", "... ... \n", "1854601 76.0 \n", "1054544 72.0 \n", "299541 64.0 \n", "252207 57.0 \n", "1741218 73.0 \n", "\n", " Давление в пневмостистеме (spn46), кПа Уровень топлива % (spn96) \\\n", "1366103 768.0 NaN \n", "120095 824.0 NaN \n", "74306 808.0 NaN \n", "1277480 760.0 NaN \n", "1796794 696.0 NaN \n", "... ... ... \n", "1854601 720.0 NaN \n", "1054544 600.0 NaN \n", "299541 784.0 NaN \n", "252207 776.0 NaN \n", "1741218 696.0 NaN \n", "\n", " Электросистема. Напряжение ДВС. Частота вращения коленчатого вала \\\n", "1366103 28.20 955.375 \n", "120095 27.80 1385.000 \n", "74306 NaN 1914.750 \n", "1277480 NaN 1924.125 \n", "1796794 27.95 1903.875 \n", "... ... ... \n", "1854601 28.00 1437.750 \n", "1054544 28.00 970.750 \n", "299541 28.10 701.125 \n", "252207 NaN 647.500 \n", "1741218 28.05 651.625 \n", "\n", " result result_true \n", "1366103 2 2 \n", "120095 1 1 \n", "74306 1 1 \n", "1277480 2 2 \n", "1796794 2 2 \n", "... ... ... \n", "1854601 2 2 \n", "1054544 2 2 \n", "299541 1 1 \n", "252207 1 1 \n", "1741218 2 2 \n", "\n", "[283424 rows x 17 columns]" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Полож.пед.акселер.,%Давл.масла двиг.,кПаТемп.масла двиг.,°СОбор.двиг.,об/минЗначение счетчика моточасов, час:минСост.пед.сцепл.КПП. Температура маслаКПП. Давление масла в системе смазкиСкоростьДВС. Давление смазкиДВС. Температура охлаждающей жидкостиДавление в пневмостистеме (spn46), кПаУровень топлива % (spn96)Электросистема. НапряжениеДВС. Частота вращения коленчатого валаresultresult_true
13661030.0260.0NaN955.375NaN1.0NaN1248.00.0260.072.0768.0NaN28.20955.37522
1200950.0328.0NaN1385.00016618.01.0NaN1216.00.0328.084.0824.0NaN27.801385.00011
7430694.8508.0NaN1914.75053730.01.0NaN1200.00.0508.081.0808.0NaNNaN1914.75011
127748094.8460.0NaN1924.125NaN1.0NaN1280.010.5460.075.0760.0NaNNaN1924.12522
179679494.8500.0NaN1903.875287954.01.0NaN1248.00.0500.077.0696.0NaN27.951903.87522
......................................................
185460156.4412.0NaN1437.750295936.01.0NaN1216.00.0412.076.0720.0NaN28.001437.75022
10545440.0240.0NaN970.750NaN1.0NaN1248.00.0240.072.0600.0NaN28.00970.75022
2995410.0188.0NaN701.125338000.01.0NaN1200.00.0188.064.0784.0NaN28.10701.12511
2522070.0240.0NaN647.500NaN1.0NaN1200.0NaN240.057.0776.0NaNNaN647.50011
17412180.0140.0NaN651.625334600.01.0NaN1216.00.0140.073.0696.0NaN28.05651.62522
\n", "

283424 rows × 17 columns

\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "variable_name": "X_test" } }, "metadata": {}, "execution_count": 38 } ] }, { "cell_type": "code", "source": [], "metadata": { "id": "m7Kc02YLokA4" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "# Новый раздел" ], "metadata": { "id": "Sz6IeJShp9Fl" } }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "jam1MmPvYL05" }, "outputs": [], "source": [ "# save data\n", "# combinet.to_csv(\"EDA/dataset.csv\", index=False)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.11" }, "colab": { "provenance": [], "gpuType": "T4" }, "accelerator": "GPU", "widgets": { "application/vnd.jupyter.widget-state+json": { "aa393e98c6ef47b58dc10a5b91aab35d": { "model_module": "catboost-widget", "model_name": "CatboostWidgetModel", "model_module_version": "^1.0.0", "state": { "_dom_classes": [], "_model_module": "catboost-widget", "_model_module_version": "^1.0.0", "_model_name": "CatboostWidgetModel", "_view_count": null, "_view_module": "catboost-widget", "_view_module_version": "^1.0.0", "_view_name": "CatboostWidgetView", "data": { "catboost_info": { "path": "catboost_info", "name": "catboost_info", "content": { "passed_iterations": 49999, "total_iterations": 50000, "data": { "iterations": [ { "learn": [ 0.9448978304, 1.027030269 ], "iteration": 0, "passed_time": 0.0491230807, "remaining_time": 2456.104912, "test": [ 0.944888224, 1.027029071 ] }, { "learn": [ 0.9762028252, 0.0887520964 ], "iteration": 100, "passed_time": 4.683602736, "remaining_time": 2313.931613, "test": [ 0.9760676583, 0.08906415802 ] }, { "learn": [ 0.9844888304, 0.05350585496 ], "iteration": 200, "passed_time": 7.402095886, "remaining_time": 1833.915289, "test": [ 0.9842779722, 0.05396667598 ] }, { "learn": [ 0.9881837395, 0.04017625292 ], "iteration": 300, "passed_time": 10.11904926, "remaining_time": 1670.786144, "test": [ 0.987943858, 0.04067411204 ] }, { "learn": [ 0.9898106756, 0.03284420443 ], "iteration": 400, "passed_time": 12.83873713, "remaining_time": 1588.001304, "test": [ 0.989591566, 0.03338415622 ] }, { "learn": [ 0.9909452185, 0.02835116249 ], "iteration": 500, "passed_time": 16.50815568, "remaining_time": 1631.012372, "test": [ 0.9908546912, 0.02891415969 ] }, { "learn": [ 0.9919582313, 0.02508311738 ], "iteration": 600, "passed_time": 20.01046373, "remaining_time": 1644.753574, "test": [ 0.9919096477, 0.02563670205 ] }, { "learn": [ 0.9926572257, 0.0227925448 ], "iteration": 700, "passed_time": 22.7050337, "remaining_time": 1596.769553, "test": [ 0.9926011911, 0.02336707217 ] }, { "learn": [ 0.9933017276, 0.02096851574 ], "iteration": 800, "passed_time": 25.47349552, "remaining_time": 1564.632342, "test": [ 0.9933139043, 0.02156474508 ] }, { "learn": [ 0.9937451167, 0.01955079957 ], "iteration": 900, "passed_time": 28.64290955, "remaining_time": 1560.863725, "test": [ 0.9936561477, 0.02016928342 ] }, { "learn": [ 0.9941591034, 0.01836990338 ], "iteration": 1000, "passed_time": 32.69772621, "remaining_time": 1600.555331, "test": [ 0.9940901265, 0.01901757648 ] }, { "learn": [ 0.9944735137, 0.01733765193 ], "iteration": 1100, "passed_time": 35.4344517, "remaining_time": 1573.75954, "test": [ 0.9943829739, 0.01800289027 ] }, { "learn": [ 0.9947479366, 0.01655697834 ], "iteration": 1200, "passed_time": 38.1432076, "remaining_time": 1549.833795, "test": [ 0.9945523315, 0.01724779298 ] }, { "learn": [ 0.9950192233, 0.01580121415 ], "iteration": 1300, "passed_time": 40.89884779, "remaining_time": 1530.924665, "test": [ 0.9947851981, 0.01653738841 ] }, { "learn": [ 0.9952266087, 0.01518926167 ], "iteration": 1400, "passed_time": 45.39673216, "remaining_time": 1574.757877, "test": [ 0.9950039517, 0.01596044355 ] }, { "learn": [ 0.9954171366, 0.01461310516 ], "iteration": 1500, "passed_time": 48.15516286, "remaining_time": 1555.947531, "test": [ 0.9951486113, 0.01541179904 ] }, { "learn": [ 0.9956060964, 0.01407089471 ], "iteration": 1600, "passed_time": 50.9174545, "remaining_time": 1539.259138, "test": [ 0.995307384, 0.01488854334 ] }, { "learn": [ 0.9957868235, 0.01357687366 ], "iteration": 1700, "passed_time": 53.64121577, "remaining_time": 1523.114098, "test": [ 0.9954308739, 0.01441905089 ] }, { "learn": [ 0.9959338358, 0.01317254084 ], "iteration": 1800, "passed_time": 58.12408934, "remaining_time": 1555.537469, "test": [ 0.9956143446, 0.01404400029 ] }, { "learn": [ 0.9960459572, 0.01283297918 ], "iteration": 1900, "passed_time": 60.81698809, "remaining_time": 1538.788169, "test": [ 0.9957519476, 0.01372475617 ] }, { "learn": [ 0.9961443575, 0.01253163689 ], "iteration": 2000, "passed_time": 63.55971014, "remaining_time": 1524.638944, "test": [ 0.9957907587, 0.01344921331 ] }, { "learn": [ 0.9962353091, 0.01223224482 ], "iteration": 2100, "passed_time": 66.2771035, "remaining_time": 1510.998087, "test": [ 0.9958542678, 0.01317012667 ] }, { "learn": [ 0.9963329252, 0.01192914298 ], "iteration": 2200, "passed_time": 70.81624879, "remaining_time": 1537.91271, "test": [ 0.9959354183, 0.01288226238 ] }, { "learn": [ 0.9964164282, 0.01166976504 ], "iteration": 2300, "passed_time": 73.50937721, "remaining_time": 1523.826069, "test": [ 0.9960095123, 0.0126417112 ] }, { "learn": [ 0.9965007153, 0.0114363723 ], "iteration": 2400, "passed_time": 76.25869302, "remaining_time": 1511.802386, "test": [ 0.9960800779, 0.01242814587 ] }, { "learn": [ 0.9965548158, 0.01122767686 ], "iteration": 2500, "passed_time": 79.01986509, "remaining_time": 1500.745531, "test": [ 0.9961400587, 0.0122325734 ] }, { "learn": [ 0.9966312622, 0.01101886579 ], "iteration": 2600, "passed_time": 83.08654977, "remaining_time": 1514.117406, "test": [ 0.9962070961, 0.01203894769 ] }, { "learn": [ 0.9966759539, 0.01086726472 ], "iteration": 2700, "passed_time": 86.25906444, "remaining_time": 1510.539611, "test": [ 0.9962494355, 0.01190165304 ] }, { "learn": [ 0.9967277023, 0.01070254663 ], "iteration": 2800, "passed_time": 89.01244027, "remaining_time": 1499.927943, "test": [ 0.9963164728, 0.01174815293 ] }, { "learn": [ 0.9967810187, 0.01054407809 ], "iteration": 2900, "passed_time": 91.72176362, "remaining_time": 1489.142828, "test": [ 0.9963623405, 0.01160562444 ] }, { "learn": [ 0.9968366874, 0.01037903075 ], "iteration": 3000, "passed_time": 95.36004584, "remaining_time": 1493.44445, "test": [ 0.9964011516, 0.01144941609 ] }, { "learn": [ 0.9968704022, 0.01024204822 ], "iteration": 3100, "passed_time": 99.02936505, "remaining_time": 1497.703383, "test": [ 0.9964293779, 0.01132401045 ] }, { "learn": [ 0.9969076453, 0.01009866069 ], "iteration": 3200, "passed_time": 101.7341989, "remaining_time": 1487.366064, "test": [ 0.9964399627, 0.01119437104 ] }, { "learn": [ 0.9969586096, 0.009958186609 ], "iteration": 3300, "passed_time": 104.4381422, "remaining_time": 1477.478583, "test": [ 0.9964611324, 0.01106808677 ] }, { "learn": [ 0.997000165, 0.009843263573 ], "iteration": 3400, "passed_time": 107.1791916, "remaining_time": 1468.521949, "test": [ 0.9965246415, 0.01096363031 ] }, { "learn": [ 0.9970330958, 0.009727711141 ], "iteration": 3500, "passed_time": 111.6625875, "remaining_time": 1483.061599, "test": [ 0.9965387547, 0.01086342743 ] }, { "learn": [ 0.9970652425, 0.009626260404 ], "iteration": 3600, "passed_time": 114.3224443, "remaining_time": 1473.048346, "test": [ 0.9965881506, 0.01077918451 ] }, { "learn": [ 0.9970856282, 0.009528827237 ], "iteration": 3700, "passed_time": 117.0155676, "remaining_time": 1463.848626, "test": [ 0.9966163769, 0.0106950863 ] }, { "learn": [ 0.9971122864, 0.00943467658 ], "iteration": 3800, "passed_time": 119.7060457, "remaining_time": 1454.959118, "test": [ 0.9966234334, 0.01061032396 ] }, { "learn": [ 0.9971397287, 0.009334333029 ], "iteration": 3900, "passed_time": 124.2015733, "remaining_time": 1467.718105, "test": [ 0.996655188, 0.01051843356 ] }, { "learn": [ 0.9971777559, 0.009230231477 ], "iteration": 4000, "passed_time": 126.8920845, "remaining_time": 1458.862534, "test": [ 0.9967010557, 0.01042795413 ] }, { "learn": [ 0.9972044141, 0.009134379458 ], "iteration": 4100, "passed_time": 129.624901, "remaining_time": 1450.78111, "test": [ 0.9967151688, 0.01034447441 ] }, { "learn": [ 0.9972291122, 0.009052453792 ], "iteration": 4200, "passed_time": 132.3223133, "remaining_time": 1442.568348, "test": [ 0.9967469233, 0.01027204986 ] }, { "learn": [ 0.9972553784, 0.008961872011 ], "iteration": 4300, "passed_time": 136.8129714, "remaining_time": 1453.665655, "test": [ 0.9967575082, 0.01019620901 ] }, { "learn": [ 0.9972824287, 0.008875330006 ], "iteration": 4400, "passed_time": 139.5261723, "remaining_time": 1445.638248, "test": [ 0.9967998476, 0.01011495083 ] }, { "learn": [ 0.9973035984, 0.008800948674 ], "iteration": 4500, "passed_time": 142.2293175, "remaining_time": 1437.745327, "test": [ 0.9968245456, 0.01005474606 ] }, { "learn": [ 0.9973239841, 0.008724022192 ], "iteration": 4600, "passed_time": 144.9320145, "remaining_time": 1430.073576, "test": [ 0.9968104324, 0.009984955664 ] }, { "learn": [ 0.9973533866, 0.008648575787 ], "iteration": 4700, "passed_time": 148.9828654, "remaining_time": 1435.604089, "test": [ 0.9968210173, 0.009924785351 ] }, { "learn": [ 0.9973686759, 0.008586156049 ], "iteration": 4800, "passed_time": 152.1089583, "remaining_time": 1432.029329, "test": [ 0.9968280738, 0.009869461258 ] }, { "learn": [ 0.997382005, 0.008523600019 ], "iteration": 4900, "passed_time": 154.8005636, "remaining_time": 1424.474723, "test": [ 0.9968386587, 0.009815033018 ] }, { "learn": [ 0.9974035668, 0.008460501115 ], "iteration": 5000, "passed_time": 157.458219, "remaining_time": 1416.809118, "test": [ 0.9968633567, 0.009759347999 ] }, { "learn": [ 0.9974255206, 0.008398308788 ], "iteration": 5100, "passed_time": 160.6530819, "remaining_time": 1414.068364, "test": [ 0.9968986395, 0.009706273875 ] }, { "learn": [ 0.9974412019, 0.008348344514 ], "iteration": 5200, "passed_time": 164.6869037, "remaining_time": 1418.53655, "test": [ 0.9969268658, 0.009666607398 ] }, { "learn": [ 0.9974604115, 0.008283221129 ], "iteration": 5300, "passed_time": 167.3939949, "remaining_time": 1411.496733, "test": [ 0.996955092, 0.009613483313 ] }, { "learn": [ 0.9974784451, 0.008229800535 ], "iteration": 5400, "passed_time": 170.071785, "remaining_time": 1404.375401, "test": [ 0.9969445072, 0.009570093016 ] }, { "learn": [ 0.9975007909, 0.008171860078 ], "iteration": 5500, "passed_time": 172.7706931, "remaining_time": 1397.586452, "test": [ 0.9969515637, 0.00952041452 ] }, { "learn": [ 0.9975054953, 0.008123317689 ], "iteration": 5600, "passed_time": 177.2911033, "remaining_time": 1405.382556, "test": [ 0.9969621486, 0.009482335597 ] }, { "learn": [ 0.997525881, 0.008067014276 ], "iteration": 5700, "passed_time": 179.9588855, "remaining_time": 1398.350933, "test": [ 0.996955092, 0.009434157655 ] }, { "learn": [ 0.9975403862, 0.008015249102 ], "iteration": 5800, "passed_time": 182.7124059, "remaining_time": 1392.123018, "test": [ 0.9969692051, 0.009388751689 ] }, { "learn": [ 0.9975568516, 0.007970678342 ], "iteration": 5900, "passed_time": 185.3685704, "remaining_time": 1385.285305, "test": [ 0.9969868466, 0.009349425463 ] }, { "learn": [ 0.9975780214, 0.007920229387 ], "iteration": 6000, "passed_time": 189.9377065, "remaining_time": 1392.612756, "test": [ 0.99697979, 0.009303523332 ] }, { "learn": [ 0.9975886063, 0.007868974928 ], "iteration": 6100, "passed_time": 192.655816, "remaining_time": 1386.231383, "test": [ 0.9969939031, 0.009258406795 ] }, { "learn": [ 0.9976050716, 0.007823836792 ], "iteration": 6200, "passed_time": 195.3110167, "remaining_time": 1379.523822, "test": [ 0.9970080163, 0.009220359745 ] }, { "learn": [ 0.9976136964, 0.007781229259 ], "iteration": 6300, "passed_time": 197.987009, "remaining_time": 1373.089082, "test": [ 0.9970221294, 0.009187626653 ] }, { "learn": [ 0.9976285936, 0.007736546709 ], "iteration": 6400, "passed_time": 202.4825426, "remaining_time": 1379.165189, "test": [ 0.997004488, 0.0091539555 ] }, { "learn": [ 0.9976442749, 0.007688675063 ], "iteration": 6500, "passed_time": 205.1742077, "remaining_time": 1372.846156, "test": [ 0.9970186011, 0.009114940239 ] }, { "learn": [ 0.997657212, 0.007642062976 ], "iteration": 6600, "passed_time": 207.8803781, "remaining_time": 1366.732394, "test": [ 0.9970186011, 0.009080381847 ] }, { "learn": [ 0.9976623084, 0.007604473004 ], "iteration": 6700, "passed_time": 210.5251483, "remaining_time": 1360.323593, "test": [ 0.9970432991, 0.009047976947 ] }, { "learn": [ 0.9976705411, 0.007567599716 ], "iteration": 6800, "passed_time": 214.3259215, "remaining_time": 1361.368252, "test": [ 0.9970362425, 0.009020671519 ] }, { "learn": [ 0.9976858304, 0.007525342103 ], "iteration": 6900, "passed_time": 217.8488643, "remaining_time": 1360.537343, "test": [ 0.9970609405, 0.008988345007 ] }, { "learn": [ 0.9977015117, 0.007482840234 ], "iteration": 7000, "passed_time": 220.5126718, "remaining_time": 1354.35286, "test": [ 0.9970785819, 0.008952620283 ] }, { "learn": [ 0.9977152329, 0.007440479253 ], "iteration": 7100, "passed_time": 223.2061809, "remaining_time": 1348.446973, "test": [ 0.9970891668, 0.008917010125 ] }, { "learn": [ 0.9977340504, 0.007402055445 ], "iteration": 7200, "passed_time": 226.1869839, "remaining_time": 1344.337832, "test": [ 0.9970891668, 0.008890108692 ] }, { "learn": [ 0.9977434592, 0.007363394273 ], "iteration": 7300, "passed_time": 230.2626925, "remaining_time": 1346.66302, "test": [ 0.9970891668, 0.008859412805 ] }, { "learn": [ 0.9977556122, 0.007331468103 ], "iteration": 7400, "passed_time": 232.9642551, "remaining_time": 1340.905865, "test": [ 0.9971068082, 0.008835423756 ] }, { "learn": [ 0.9977626688, 0.007299309162 ], "iteration": 7500, "passed_time": 235.6316763, "remaining_time": 1335.036744, "test": [ 0.9971103365, 0.008811600956 ] }, { "learn": [ 0.9977748219, 0.007262951949 ], "iteration": 7600, "passed_time": 238.3237872, "remaining_time": 1329.389587, "test": [ 0.9971279779, 0.008782208363 ] }, { "learn": [ 0.9977814864, 0.007228137599 ], "iteration": 7700, "passed_time": 242.7898455, "remaining_time": 1333.562872, "test": [ 0.9971315062, 0.008754162133 ] }, { "learn": [ 0.9977936394, 0.007194403636 ], "iteration": 7800, "passed_time": 245.4839817, "remaining_time": 1327.929566, "test": [ 0.997142091, 0.008727302047 ] }, { "learn": [ 0.9978097128, 0.007162974398 ], "iteration": 7900, "passed_time": 248.1344181, "remaining_time": 1322.137814, "test": [ 0.9971491476, 0.008699826063 ] }, { "learn": [ 0.9978206897, 0.007135269471 ], "iteration": 8000, "passed_time": 250.7854834, "remaining_time": 1316.427886, "test": [ 0.997142091, 0.00867890531 ] }, { "learn": [ 0.9978269622, 0.00710000413 ], "iteration": 8100, "passed_time": 255.4060321, "remaining_time": 1320.979798, "test": [ 0.9971526758, 0.008651531832 ] }, { "learn": [ 0.9978387232, 0.007068668305 ], "iteration": 8200, "passed_time": 258.0598649, "remaining_time": 1315.284026, "test": [ 0.9971562041, 0.008629485233 ] }, { "learn": [ 0.9978442117, 0.007038318688 ], "iteration": 8300, "passed_time": 260.7387179, "remaining_time": 1309.78723, "test": [ 0.9971562041, 0.008608135505 ] }, { "learn": [ 0.9978516603, 0.007009852666 ], "iteration": 8400, "passed_time": 263.3711746, "remaining_time": 1304.127782, "test": [ 0.9971526758, 0.008585837378 ] }, { "learn": [ 0.9978595009, 0.006985602528 ], "iteration": 8500, "passed_time": 267.1711759, "remaining_time": 1304.239105, "test": [ 0.9971491476, 0.008568751566 ] }, { "learn": [ 0.99787283, 0.006959344753 ], "iteration": 8600, "passed_time": 270.676786, "remaining_time": 1302.842491, "test": [ 0.9971703173, 0.008549898166 ] }, { "learn": [ 0.9978783185, 0.006927657478 ], "iteration": 8700, "passed_time": 273.4217683, "remaining_time": 1297.787106, "test": [ 0.9971950152, 0.00852403644 ] }, { "learn": [ 0.9978865512, 0.006905722018 ], "iteration": 8800, "passed_time": 276.0809963, "remaining_time": 1292.382793, "test": [ 0.9972020718, 0.008509969824 ] }, { "learn": [ 0.9978928237, 0.006879046177 ], "iteration": 8900, "passed_time": 279.0981848, "remaining_time": 1288.692989, "test": [ 0.9971985435, 0.008491050959 ] }, { "learn": [ 0.9978987042, 0.00685084738 ], "iteration": 9000, "passed_time": 283.1891632, "remaining_time": 1289.909177, "test": [ 0.9972056001, 0.008470945088 ] }, { "learn": [ 0.9979069369, 0.00682611103 ], "iteration": 9100, "passed_time": 285.8958519, "remaining_time": 1284.787875, "test": [ 0.9972020718, 0.008454031555 ] }, { "learn": [ 0.9979132094, 0.006804134988 ], "iteration": 9200, "passed_time": 288.5471679, "remaining_time": 1279.473525, "test": [ 0.9972197132, 0.008440990864 ] }, { "learn": [ 0.9979179138, 0.006777272319 ], "iteration": 9300, "passed_time": 291.2092379, "remaining_time": 1274.263496, "test": [ 0.9972197132, 0.00841852821 ] }, { "learn": [ 0.9979265385, 0.006754035187 ], "iteration": 9400, "passed_time": 295.8032425, "remaining_time": 1277.450892, "test": [ 0.9972197132, 0.008402349449 ] }, { "learn": [ 0.9979375155, 0.006728423654 ], "iteration": 9500, "passed_time": 298.463373, "remaining_time": 1272.231149, "test": [ 0.9972302981, 0.008379338086 ] }, { "learn": [ 0.9979461402, 0.00669918888 ], "iteration": 9600, "passed_time": 301.1550371, "remaining_time": 1267.197411, "test": [ 0.9972444112, 0.008355759062 ] }, { "learn": [ 0.9979500605, 0.006670938017 ], "iteration": 9700, "passed_time": 303.873761, "remaining_time": 1262.324368, "test": [ 0.997254996, 0.0083332051 ] }, { "learn": [ 0.997956333, 0.006651376193 ], "iteration": 9800, "passed_time": 308.5439065, "remaining_time": 1265.499081, "test": [ 0.997254996, 0.008321222204 ] }, { "learn": [ 0.9979633896, 0.006630599986 ], "iteration": 9900, "passed_time": 311.1805243, "remaining_time": 1260.279552, "test": [ 0.9972691092, 0.00830641048 ] }, { "learn": [ 0.9979747586, 0.00660824646 ], "iteration": 10000, "passed_time": 313.8296772, "remaining_time": 1255.16181, "test": [ 0.9972761657, 0.008288667422 ] }, { "learn": [ 0.9979786789, 0.006588207612 ], "iteration": 10100, "passed_time": 316.4952454, "remaining_time": 1250.157786, "test": [ 0.9972691092, 0.008272731575 ] }, { "learn": [ 0.9979947522, 0.006568517918 ], "iteration": 10200, "passed_time": 320.2134758, "remaining_time": 1249.306551, "test": [ 0.997279694, 0.008256822431 ] }, { "learn": [ 0.9980010248, 0.006542854318 ], "iteration": 10300, "passed_time": 323.5710698, "remaining_time": 1247.009795, "test": [ 0.9972832223, 0.008238077567 ] }, { "learn": [ 0.9980135698, 0.006522344571 ], "iteration": 10400, "passed_time": 326.2194449, "remaining_time": 1241.992481, "test": [ 0.9972902789, 0.008222644776 ] }, { "learn": [ 0.9980182742, 0.006502416747 ], "iteration": 10500, "passed_time": 328.8569804, "remaining_time": 1236.979513, "test": [ 0.9972902789, 0.008208069936 ] }, { "learn": [ 0.998028075, 0.006480569342 ], "iteration": 10600, "passed_time": 331.5469567, "remaining_time": 1232.206259, "test": [ 0.9972938072, 0.008192286557 ] }, { "learn": [ 0.9980363077, 0.006457829908 ], "iteration": 10700, "passed_time": 336.0750285, "remaining_time": 1234.222273, "test": [ 0.9972938072, 0.008175708968 ] }, { "learn": [ 0.9980492448, 0.006433427398 ], "iteration": 10800, "passed_time": 338.760552, "remaining_time": 1229.430134, "test": [ 0.9973114486, 0.008160038432 ] }, { "learn": [ 0.9980570855, 0.006414226214 ], "iteration": 10900, "passed_time": 341.4424695, "remaining_time": 1224.663711, "test": [ 0.9973079203, 0.008145612614 ] }, { "learn": [ 0.9980613978, 0.006388484513 ], "iteration": 11000, "passed_time": 344.0799889, "remaining_time": 1219.777792, "test": [ 0.997304392, 0.008128621555 ] }, { "learn": [ 0.9980661022, 0.006368615265 ], "iteration": 11100, "passed_time": 348.5752723, "remaining_time": 1221.442169, "test": [ 0.9973149769, 0.008114256896 ] }, { "learn": [ 0.9980727668, 0.006347094809 ], "iteration": 11200, "passed_time": 351.2334351, "remaining_time": 1216.632983, "test": [ 0.9973185051, 0.008098144462 ] }, { "learn": [ 0.9980821756, 0.006329001576 ], "iteration": 11300, "passed_time": 353.8937864, "remaining_time": 1211.86936, "test": [ 0.9973255617, 0.008084179492 ] }, { "learn": [ 0.9980884481, 0.006309531252 ], "iteration": 11400, "passed_time": 356.5845653, "remaining_time": 1207.245648, "test": [ 0.9973361466, 0.00806920238 ] }, { "learn": [ 0.9980908003, 0.006290990857 ], "iteration": 11500, "passed_time": 360.984029, "remaining_time": 1208.375283, "test": [ 0.9973432031, 0.008054681808 ] }, { "learn": [ 0.9980982489, 0.006275124632 ], "iteration": 11600, "passed_time": 363.750781, "remaining_time": 1204.005365, "test": [ 0.9973432031, 0.008044114188 ] }, { "learn": [ 0.9981060896, 0.006255151633 ], "iteration": 11700, "passed_time": 366.3840916, "remaining_time": 1199.226077, "test": [ 0.9973502597, 0.008029149996 ] }, { "learn": [ 0.9981088338, 0.006239436248 ], "iteration": 11800, "passed_time": 369.065595, "remaining_time": 1194.639155, "test": [ 0.9973467314, 0.008018754656 ] }, { "learn": [ 0.9981205948, 0.006219763781 ], "iteration": 11900, "passed_time": 372.4019695, "remaining_time": 1192.18071, "test": [ 0.9973608445, 0.008003920535 ] }, { "learn": [ 0.9981245151, 0.006199587875 ], "iteration": 12000, "passed_time": 376.2535084, "remaining_time": 1191.338811, "test": [ 0.9973608445, 0.007987740051 ] }, { "learn": [ 0.9981292195, 0.006182881305 ], "iteration": 12100, "passed_time": 378.8887257, "remaining_time": 1186.637783, "test": [ 0.997353788, 0.007978722946 ] }, { "learn": [ 0.9981378442, 0.006166265853 ], "iteration": 12200, "passed_time": 381.5641946, "remaining_time": 1182.095319, "test": [ 0.9973608445, 0.007969782505 ] }, { "learn": [ 0.9981413725, 0.006153515982 ], "iteration": 12300, "passed_time": 384.1603675, "remaining_time": 1177.340191, "test": [ 0.9973608445, 0.00796445218 ] }, { "learn": [ 0.998146861, 0.006137529543 ], "iteration": 12400, "passed_time": 388.6424267, "remaining_time": 1178.337763, "test": [ 0.9973608445, 0.007953886282 ] }, { "learn": [ 0.9981519574, 0.006121295021 ], "iteration": 12500, "passed_time": 391.2834846, "remaining_time": 1173.725253, "test": [ 0.997353788, 0.007943106758 ] }, { "learn": [ 0.9981637184, 0.006106924568 ], "iteration": 12600, "passed_time": 393.9391912, "remaining_time": 1169.18751, "test": [ 0.9973784859, 0.00793429122 ] }, { "learn": [ 0.9981692068, 0.006090557199 ], "iteration": 12700, "passed_time": 396.6002717, "remaining_time": 1164.695184, "test": [ 0.9973749577, 0.007922798459 ] }, { "learn": [ 0.9981739112, 0.006075904973 ], "iteration": 12800, "passed_time": 401.1306253, "remaining_time": 1165.663474, "test": [ 0.9973784859, 0.007913149088 ] }, { "learn": [ 0.9981790077, 0.006058980183 ], "iteration": 12900, "passed_time": 403.7746828, "remaining_time": 1161.122158, "test": [ 0.9973820142, 0.007902497051 ] }, { "learn": [ 0.9981801838, 0.006046018215 ], "iteration": 13000, "passed_time": 406.3964309, "remaining_time": 1156.546539, "test": [ 0.9973961274, 0.007892396308 ] }, { "learn": [ 0.9981841041, 0.0060320107 ], "iteration": 13100, "passed_time": 409.0398369, "remaining_time": 1152.061747, "test": [ 0.9974031839, 0.0078835868 ] }, { "learn": [ 0.9981888085, 0.006016657486 ], "iteration": 13200, "passed_time": 412.6686106, "remaining_time": 1150.351655, "test": [ 0.9974031839, 0.007871471249 ] }, { "learn": [ 0.9981919447, 0.006002687489 ], "iteration": 13300, "passed_time": 416.1108824, "remaining_time": 1148.098133, "test": [ 0.9974067122, 0.007862395568 ] }, { "learn": [ 0.9981931208, 0.005988901258 ], "iteration": 13400, "passed_time": 418.749658, "remaining_time": 1143.63247, "test": [ 0.9974031839, 0.007851988168 ] }, { "learn": [ 0.9982029217, 0.005971587114 ], "iteration": 13500, "passed_time": 421.414864, "remaining_time": 1139.265323, "test": [ 0.9973961274, 0.007841629006 ] }, { "learn": [ 0.9982103703, 0.005951777589 ], "iteration": 13600, "passed_time": 424.1024029, "remaining_time": 1134.982969, "test": [ 0.9974031839, 0.007828241171 ] }, { "learn": [ 0.9982115464, 0.005935496743 ], "iteration": 13700, "passed_time": 428.6014496, "remaining_time": 1135.523248, "test": [ 0.9974208253, 0.007817639095 ] }, { "learn": [ 0.9982197791, 0.005916915001 ], "iteration": 13800, "passed_time": 431.2731305, "remaining_time": 1131.197453, "test": [ 0.9974455233, 0.007805263403 ] }, { "learn": [ 0.9982233074, 0.005900861564 ], "iteration": 13900, "passed_time": 433.9324005, "remaining_time": 1126.863228, "test": [ 0.9974490516, 0.007793593194 ] }, { "learn": [ 0.9982260516, 0.005885346024 ], "iteration": 14000, "passed_time": 436.5732286, "remaining_time": 1122.505511, "test": [ 0.9974455233, 0.007784515791 ] }, { "learn": [ 0.9982350684, 0.005869831633 ], "iteration": 14100, "passed_time": 441.0256973, "remaining_time": 1122.784307, "test": [ 0.9974455233, 0.00777506368 ] }, { "learn": [ 0.9982366365, 0.005855316848 ], "iteration": 14200, "passed_time": 443.6402684, "remaining_time": 1118.363352, "test": [ 0.9974596364, 0.007768019174 ] }, { "learn": [ 0.9982405568, 0.005841124036 ], "iteration": 14300, "passed_time": 446.2802289, "remaining_time": 1114.031039, "test": [ 0.997466693, 0.007757704805 ] }, { "learn": [ 0.9982476134, 0.005823417093 ], "iteration": 14400, "passed_time": 448.9592674, "remaining_time": 1109.818829, "test": [ 0.9974631647, 0.007743685566 ] }, { "learn": [ 0.9982531019, 0.005807903468 ], "iteration": 14500, "passed_time": 453.0174919, "remaining_time": 1109.004065, "test": [ 0.997466693, 0.00773437817 ] }, { "learn": [ 0.9982558461, 0.005794621442 ], "iteration": 14600, "passed_time": 456.2001044, "remaining_time": 1106.022019, "test": [ 0.997466693, 0.007728600779 ] }, { "learn": [ 0.9982593744, 0.005784074076 ], "iteration": 14700, "passed_time": 458.7973778, "remaining_time": 1101.631769, "test": [ 0.997466693, 0.007723083531 ] }, { "learn": [ 0.9982676071, 0.0057708579 ], "iteration": 14800, "passed_time": 461.4786429, "remaining_time": 1097.465492, "test": [ 0.997466693, 0.007715778021 ] }, { "learn": [ 0.9982723115, 0.005758472114 ], "iteration": 14900, "passed_time": 464.3332411, "remaining_time": 1093.72743, "test": [ 0.9974702213, 0.007709259829 ] }, { "learn": [ 0.9982746637, 0.005744437033 ], "iteration": 15000, "passed_time": 468.4891156, "remaining_time": 1093.037168, "test": [ 0.997466693, 0.007698041854 ] }, { "learn": [ 0.998278192, 0.0057332239 ], "iteration": 15100, "passed_time": 471.1568909, "remaining_time": 1088.861952, "test": [ 0.9974737496, 0.007692255849 ] }, { "learn": [ 0.9982856406, 0.005718042966 ], "iteration": 15200, "passed_time": 473.8139887, "remaining_time": 1084.682126, "test": [ 0.9974702213, 0.007681487524 ] }, { "learn": [ 0.9982883848, 0.005703790047 ], "iteration": 15300, "passed_time": 476.4527261, "remaining_time": 1080.480566, "test": [ 0.9974772779, 0.007670773466 ] }, { "learn": [ 0.9982915211, 0.005689606423 ], "iteration": 15400, "passed_time": 480.9128104, "remaining_time": 1080.391035, "test": [ 0.9974702213, 0.007660275619 ] }, { "learn": [ 0.9982962255, 0.005678309064 ], "iteration": 15500, "passed_time": 483.5800636, "remaining_time": 1076.254991, "test": [ 0.9974772779, 0.007654349207 ] }, { "learn": [ 0.9982993617, 0.005667197001 ], "iteration": 15600, "passed_time": 486.2078104, "remaining_time": 1072.050668, "test": [ 0.9974808061, 0.007646962726 ] }, { "learn": [ 0.9983052422, 0.005657282094 ], "iteration": 15700, "passed_time": 488.8122216, "remaining_time": 1067.81545, "test": [ 0.9974878627, 0.007640231769 ] }, { "learn": [ 0.9983072024, 0.005645264987 ], "iteration": 15800, "passed_time": 493.1668297, "remaining_time": 1067.388925, "test": [ 0.9974843344, 0.007635000504 ] }, { "learn": [ 0.9983122988, 0.005635355056 ], "iteration": 15900, "passed_time": 495.9199038, "remaining_time": 1063.478574, "test": [ 0.9974843344, 0.007628113634 ] }, { "learn": [ 0.9983126908, 0.005623329527 ], "iteration": 16000, "passed_time": 498.5556533, "remaining_time": 1059.333395, "test": [ 0.9974843344, 0.007619317907 ] }, { "learn": [ 0.9983166112, 0.005610720925 ], "iteration": 16100, "passed_time": 501.1816088, "remaining_time": 1055.186346, "test": [ 0.9974949193, 0.007611392192 ] }, { "learn": [ 0.9983201395, 0.005596785384 ], "iteration": 16200, "passed_time": 504.3429068, "remaining_time": 1052.174922, "test": [ 0.9974984476, 0.007599934749 ] }, { "learn": [ 0.9983228837, 0.005585694378 ], "iteration": 16300, "passed_time": 508.3830241, "remaining_time": 1050.978439, "test": [ 0.9974984476, 0.007591590395 ] }, { "learn": [ 0.9983311164, 0.005574748471 ], "iteration": 16400, "passed_time": 511.0262191, "remaining_time": 1046.885552, "test": [ 0.9975019758, 0.007584848239 ] }, { "learn": [ 0.9983377809, 0.005561783823 ], "iteration": 16500, "passed_time": 513.6970665, "remaining_time": 1042.866374, "test": [ 0.9975055041, 0.00757385595 ] }, { "learn": [ 0.9983436614, 0.005549566489 ], "iteration": 16600, "passed_time": 516.3504622, "remaining_time": 1038.828329, "test": [ 0.9975055041, 0.007565800164 ] }, { "learn": [ 0.9983452296, 0.005537470899 ], "iteration": 16700, "passed_time": 520.7848959, "remaining_time": 1038.357958, "test": [ 0.997516089, 0.007561257156 ] }, { "learn": [ 0.9983487579, 0.005525878749 ], "iteration": 16800, "passed_time": 523.4602748, "remaining_time": 1034.364482, "test": [ 0.9975090324, 0.007551876541 ] }, { "learn": [ 0.9983515021, 0.005517129221 ], "iteration": 16900, "passed_time": 526.0256726, "remaining_time": 1030.171217, "test": [ 0.997516089, 0.007547161253 ] }, { "learn": [ 0.9983546384, 0.005503965877 ], "iteration": 17000, "passed_time": 528.6772833, "remaining_time": 1026.164442, "test": [ 0.997516089, 0.007537722063 ] }, { "learn": [ 0.9983585587, 0.005493457178 ], "iteration": 17100, "passed_time": 532.955985, "remaining_time": 1025.303722, "test": [ 0.9975125607, 0.007531985158 ] }, { "learn": [ 0.9983605188, 0.005483218001 ], "iteration": 17200, "passed_time": 535.7683253, "remaining_time": 1021.607192, "test": [ 0.997516089, 0.007525428203 ] }, { "learn": [ 0.9983640471, 0.005474354384 ], "iteration": 17300, "passed_time": 538.3880436, "remaining_time": 1017.556826, "test": [ 0.9975125607, 0.007521346042 ] }, { "learn": [ 0.9983687515, 0.005464974311 ], "iteration": 17400, "passed_time": 541.0128088, "remaining_time": 1013.532358, "test": [ 0.9975231455, 0.007516851271 ] }, { "learn": [ 0.9983671834, 0.005456376388 ], "iteration": 17500, "passed_time": 544.1477425, "remaining_time": 1010.471258, "test": [ 0.997516089, 0.007512408185 ] }, { "learn": [ 0.9983734559, 0.005447125333 ], "iteration": 17600, "passed_time": 548.0860904, "remaining_time": 1008.888202, "test": [ 0.9975196173, 0.007508295875 ] }, { "learn": [ 0.9983730639, 0.005435309603 ], "iteration": 17700, "passed_time": 550.7348607, "remaining_time": 1004.925443, "test": [ 0.9975196173, 0.007501508065 ] }, { "learn": [ 0.9983773763, 0.005424187586 ], "iteration": 17800, "passed_time": 553.4055848, "remaining_time": 1001.017158, "test": [ 0.9975196173, 0.007494434272 ] }, { "learn": [ 0.9983769842, 0.005415516923 ], "iteration": 17900, "passed_time": 556.0790327, "remaining_time": 997.1275834, "test": [ 0.9975231455, 0.007489546704 ] }, { "learn": [ 0.9983793364, 0.005404764352 ], "iteration": 18000, "passed_time": 560.440962, "remaining_time": 996.253005, "test": [ 0.9975231455, 0.007481776902 ] }, { "learn": [ 0.9983828647, 0.005391137001 ], "iteration": 18100, "passed_time": 563.1310478, "remaining_time": 992.3936409, "test": [ 0.9975302021, 0.007470712256 ] }, { "learn": [ 0.9983871771, 0.005378899758 ], "iteration": 18200, "passed_time": 565.7650466, "remaining_time": 988.4491356, "test": [ 0.9975231455, 0.007461566802 ] }, { "learn": [ 0.9983899213, 0.005366678213 ], "iteration": 18300, "passed_time": 568.3724828, "remaining_time": 984.4729431, "test": [ 0.9975302021, 0.007452949385 ] }, { "learn": [ 0.998397762, 0.005356572649 ], "iteration": 18400, "passed_time": 572.9837928, "remaining_time": 983.9527671, "test": [ 0.9975196173, 0.007448693222 ] }, { "learn": [ 0.9984028584, 0.005346607588 ], "iteration": 18500, "passed_time": 575.6025346, "remaining_time": 979.995905, "test": [ 0.9975196173, 0.007442052711 ] }, { "learn": [ 0.9984048186, 0.005336933873 ], "iteration": 18600, "passed_time": 578.2036734, "remaining_time": 976.023716, "test": [ 0.9975266738, 0.007435885108 ] }, { "learn": [ 0.9984087389, 0.005327339406 ], "iteration": 18700, "passed_time": 580.8084554, "remaining_time": 972.0722873, "test": [ 0.9975231455, 0.007428401289 ] }, { "learn": [ 0.9984142273, 0.005317994554 ], "iteration": 18800, "passed_time": 583.9805225, "remaining_time": 969.0765556, "test": [ 0.9975266738, 0.007423135569 ] }, { "learn": [ 0.9984173636, 0.005310174189 ], "iteration": 18900, "passed_time": 587.9210224, "remaining_time": 967.3433087, "test": [ 0.9975266738, 0.00742046696 ] }, { "learn": [ 0.9984193238, 0.005301737061 ], "iteration": 19000, "passed_time": 590.5218076, "remaining_time": 963.4011638, "test": [ 0.9975372587, 0.007415606096 ] }, { "learn": [ 0.998422068, 0.005289617735 ], "iteration": 19100, "passed_time": 593.1934444, "remaining_time": 959.5876781, "test": [ 0.9975302021, 0.007409025883 ] }, { "learn": [ 0.9984279485, 0.005279543564 ], "iteration": 19200, "passed_time": 595.8220102, "remaining_time": 955.7169988, "test": [ 0.9975266738, 0.007402445671 ] }, { "learn": [ 0.9984303007, 0.005270812412 ], "iteration": 19300, "passed_time": 600.2214528, "remaining_time": 954.6758395, "test": [ 0.9975337304, 0.007396734607 ] }, { "learn": [ 0.9984314768, 0.005261863804 ], "iteration": 19400, "passed_time": 602.8570162, "remaining_time": 950.8180939, "test": [ 0.9975266738, 0.007391213913 ] }, { "learn": [ 0.998434221, 0.005252671707 ], "iteration": 19500, "passed_time": 605.4731225, "remaining_time": 946.9424523, "test": [ 0.9975337304, 0.007384502768 ] }, { "learn": [ 0.9984357891, 0.00524385518 ], "iteration": 19600, "passed_time": 608.0738169, "remaining_time": 943.0557604, "test": [ 0.9975337304, 0.007379299068 ] }, { "learn": [ 0.9984365732, 0.005237722393 ], "iteration": 19700, "passed_time": 612.1911327, "remaining_time": 941.5145998, "test": [ 0.9975372587, 0.007375565773 ] }, { "learn": [ 0.9984408856, 0.00522980402 ], "iteration": 19800, "passed_time": 615.1313533, "remaining_time": 938.1522014, "test": [ 0.9975407869, 0.007371755813 ] }, { "learn": [ 0.9984424537, 0.005221026544 ], "iteration": 19900, "passed_time": 617.7161326, "remaining_time": 934.2564632, "test": [ 0.9975443152, 0.007367119774 ] }, { "learn": [ 0.9984471581, 0.005210999845 ], "iteration": 20000, "passed_time": 620.3183876, "remaining_time": 930.4000454, "test": [ 0.9975443152, 0.007359911602 ] }, { "learn": [ 0.9984499023, 0.005200717024 ], "iteration": 20100, "passed_time": 623.2825086, "remaining_time": 927.0943597, "test": [ 0.9975443152, 0.007354589891 ] }, { "learn": [ 0.9984561748, 0.005190809008 ], "iteration": 20200, "passed_time": 627.42992, "remaining_time": 925.5375569, "test": [ 0.9975478435, 0.007348586814 ] }, { "learn": [ 0.9984608792, 0.00518031256 ], "iteration": 20300, "passed_time": 630.0171416, "remaining_time": 921.6727791, "test": [ 0.9975478435, 0.007340436274 ] }, { "learn": [ 0.9984616633, 0.005170434788 ], "iteration": 20400, "passed_time": 632.6794746, "remaining_time": 917.9295019, "test": [ 0.9975443152, 0.007335878622 ] }, { "learn": [ 0.9984644075, 0.005161851796 ], "iteration": 20500, "passed_time": 635.2940568, "remaining_time": 914.1280612, "test": [ 0.9975443152, 0.00732989708 ] }, { "learn": [ 0.9984706801, 0.005153209081 ], "iteration": 20600, "passed_time": 639.6530831, "remaining_time": 912.8275808, "test": [ 0.9975478435, 0.007323580455 ] }, { "learn": [ 0.9984726402, 0.005144069817 ], "iteration": 20700, "passed_time": 642.2304981, "remaining_time": 908.9759607, "test": [ 0.9975478435, 0.007318416379 ] }, { "learn": [ 0.9984753845, 0.005135152602 ], "iteration": 20800, "passed_time": 644.8677012, "remaining_time": 905.2205186, "test": [ 0.9975513718, 0.007313949173 ] }, { "learn": [ 0.9984793048, 0.005125975436 ], "iteration": 20900, "passed_time": 647.5040204, "remaining_time": 901.4745461, "test": [ 0.9975584284, 0.007307200127 ] }, { "learn": [ 0.9984832251, 0.005117832716 ], "iteration": 21000, "passed_time": 651.1857436, "remaining_time": 899.182676, "test": [ 0.9975619566, 0.007302695881 ] }, { "learn": [ 0.9984836171, 0.005108606928 ], "iteration": 21100, "passed_time": 654.5256163, "remaining_time": 896.4094491, "test": [ 0.9975549001, 0.007297459448 ] }, { "learn": [ 0.9984863614, 0.005100654482 ], "iteration": 21200, "passed_time": 657.131372, "remaining_time": 892.6336674, "test": [ 0.9975584284, 0.007292889736 ] }, { "learn": [ 0.9984891056, 0.005092520567 ], "iteration": 21300, "passed_time": 659.7429807, "remaining_time": 888.8767571, "test": [ 0.9975584284, 0.007287453458 ] }, { "learn": [ 0.9984910658, 0.005084604873 ], "iteration": 21400, "passed_time": 662.3922723, "remaining_time": 885.1809073, "test": [ 0.9975584284, 0.007283030184 ] }, { "learn": [ 0.9984926339, 0.005076296764 ], "iteration": 21500, "passed_time": 666.7469565, "remaining_time": 883.7552445, "test": [ 0.9975654849, 0.007279121164 ] }, { "learn": [ 0.9984965542, 0.005068260858 ], "iteration": 21600, "passed_time": 669.3396888, "remaining_time": 879.9860109, "test": [ 0.9975690132, 0.007271881982 ] }, { "learn": [ 0.9984965542, 0.00506060703 ], "iteration": 21700, "passed_time": 671.9269197, "remaining_time": 876.2204461, "test": [ 0.9975725415, 0.007266329416 ] }, { "learn": [ 0.9984992985, 0.005054922554 ], "iteration": 21800, "passed_time": 674.5065467, "remaining_time": 872.4558557, "test": [ 0.9975690132, 0.007264142329 ] }, { "learn": [ 0.9985012586, 0.005049094512 ], "iteration": 21900, "passed_time": 678.9910277, "remaining_time": 871.1460156, "test": [ 0.9975725415, 0.007261549523 ] }, { "learn": [ 0.9985083152, 0.005041692596 ], "iteration": 22000, "passed_time": 681.5691108, "remaining_time": 867.3811888, "test": [ 0.9975760698, 0.007258139252 ] }, { "learn": [ 0.9985098833, 0.005034057528 ], "iteration": 22100, "passed_time": 684.1661589, "remaining_time": 863.6510414, "test": [ 0.9975795981, 0.007254388729 ] }, { "learn": [ 0.9985122355, 0.005025514735 ], "iteration": 22200, "passed_time": 686.8194466, "remaining_time": 860.0015222, "test": [ 0.9975831263, 0.007247500136 ] }, { "learn": [ 0.9985161559, 0.005017616269 ], "iteration": 22300, "passed_time": 690.3215005, "remaining_time": 857.4151492, "test": [ 0.9975866546, 0.007242978662 ] }, { "learn": [ 0.998517332, 0.005009426076 ], "iteration": 22400, "passed_time": 693.9517707, "remaining_time": 854.9785688, "test": [ 0.9975831263, 0.007238931818 ] }, { "learn": [ 0.998517724, 0.005002369486 ], "iteration": 22500, "passed_time": 696.545068, "remaining_time": 851.2640693, "test": [ 0.9975937112, 0.007236194298 ] }, { "learn": [ 0.9985185081, 0.00499354492 ], "iteration": 22600, "passed_time": 699.181515, "remaining_time": 847.6118016, "test": [ 0.9975901829, 0.007231833045 ] }, { "learn": [ 0.9985236045, 0.004984897993 ], "iteration": 22700, "passed_time": 701.7617666, "remaining_time": 843.900906, "test": [ 0.9975972395, 0.007224402633 ] }, { "learn": [ 0.9985271328, 0.004979300041 ], "iteration": 22800, "passed_time": 706.1522312, "remaining_time": 842.359306, "test": [ 0.9976007678, 0.007221144398 ] }, { "learn": [ 0.9985271328, 0.004972596816 ], "iteration": 22900, "passed_time": 708.7733034, "remaining_time": 838.6990852, "test": [ 0.9976007678, 0.007216344262 ] }, { "learn": [ 0.998530269, 0.004963121414 ], "iteration": 23000, "passed_time": 711.4041899, "remaining_time": 835.0594201, "test": [ 0.9975901829, 0.007211666445 ] }, { "learn": [ 0.9985326212, 0.004956461067 ], "iteration": 23100, "passed_time": 714.0135766, "remaining_time": 831.4034542, "test": [ 0.9976007678, 0.007209370822 ] }, { "learn": [ 0.9985349734, 0.004947987569 ], "iteration": 23200, "passed_time": 718.1351505, "remaining_time": 829.5032066, "test": [ 0.9976007678, 0.007206180638 ] }, { "learn": [ 0.9985373256, 0.004939786274 ], "iteration": 23300, "passed_time": 721.0154575, "remaining_time": 826.1616111, "test": [ 0.997604296, 0.007201331833 ] }, { "learn": [ 0.9985408539, 0.004933332281 ], "iteration": 23400, "passed_time": 723.643597, "remaining_time": 822.537329, "test": [ 0.997604296, 0.007197126492 ] }, { "learn": [ 0.9985443822, 0.004926341157 ], "iteration": 23500, "passed_time": 726.2173542, "remaining_time": 818.8602046, "test": [ 0.9976007678, 0.007192599419 ] }, { "learn": [ 0.9985455583, 0.004918630668 ], "iteration": 23600, "passed_time": 729.1680332, "remaining_time": 815.614038, "test": [ 0.9976007678, 0.00718880195 ] }, { "learn": [ 0.9985498707, 0.00491056222 ], "iteration": 23700, "passed_time": 733.275007, "remaining_time": 813.6534074, "test": [ 0.9976078243, 0.007184507885 ] }, { "learn": [ 0.9985522229, 0.004904255239 ], "iteration": 23800, "passed_time": 735.8565377, "remaining_time": 809.9956066, "test": [ 0.9976007678, 0.007180069106 ] }, { "learn": [ 0.9985573193, 0.00489485564 ], "iteration": 23900, "passed_time": 738.526075, "remaining_time": 806.4429117, "test": [ 0.9976184092, 0.007171922442 ] }, { "learn": [ 0.9985581034, 0.004887735115 ], "iteration": 24000, "passed_time": 741.1112824, "remaining_time": 802.806226, "test": [ 0.9976219375, 0.007168106022 ] }, { "learn": [ 0.9985581034, 0.00487821224 ], "iteration": 24100, "passed_time": 745.5203088, "remaining_time": 801.1381469, "test": [ 0.9976325223, 0.007160488257 ] }, { "learn": [ 0.9985643759, 0.004869335224 ], "iteration": 24200, "passed_time": 748.1644229, "remaining_time": 797.5659661, "test": [ 0.997628994, 0.007157373014 ] }, { "learn": [ 0.9985639839, 0.004864183285 ], "iteration": 24300, "passed_time": 750.7242948, "remaining_time": 793.912335, "test": [ 0.9976325223, 0.007156296698 ] }, { "learn": [ 0.9985682962, 0.004856964369 ], "iteration": 24400, "passed_time": 753.3052422, "remaining_time": 790.2897789, "test": [ 0.9976254657, 0.007152682706 ] }, { "learn": [ 0.9985714325, 0.004851068563 ], "iteration": 24500, "passed_time": 757.0569848, "remaining_time": 787.8942107, "test": [ 0.997628994, 0.007150961204 ] }, { "learn": [ 0.9985706484, 0.004845453765 ], "iteration": 24600, "passed_time": 760.2779489, "remaining_time": 784.9396213, "test": [ 0.997628994, 0.007148643615 ] }, { "learn": [ 0.9985745688, 0.004838775425 ], "iteration": 24700, "passed_time": 762.8744216, "remaining_time": 781.3432651, "test": [ 0.9976254657, 0.007144508047 ] }, { "learn": [ 0.998577705, 0.004832335598 ], "iteration": 24800, "passed_time": 765.4989335, "remaining_time": 777.7834614, "test": [ 0.9976219375, 0.007141185639 ] }, { "learn": [ 0.9985788811, 0.004825860165 ], "iteration": 24900, "passed_time": 768.0838389, "remaining_time": 774.1912482, "test": [ 0.997628994, 0.007135589141 ] }, { "learn": [ 0.9985800572, 0.004818670728 ], "iteration": 25000, "passed_time": 772.5494271, "remaining_time": 772.4876257, "test": [ 0.9976360506, 0.007132047076 ] }, { "learn": [ 0.9985839775, 0.004811629451 ], "iteration": 25100, "passed_time": 775.129669, "remaining_time": 768.8918222, "test": [ 0.9976219375, 0.007129078271 ] }, { "learn": [ 0.9985831935, 0.004804101197 ], "iteration": 25200, "passed_time": 777.7208981, "remaining_time": 765.3148903, "test": [ 0.9976431071, 0.00712383107 ] }, { "learn": [ 0.9985878979, 0.00479622417 ], "iteration": 25300, "passed_time": 780.3397057, "remaining_time": 761.7726727, "test": [ 0.9976395789, 0.007118661395 ] }, { "learn": [ 0.9985875058, 0.004789744527 ], "iteration": 25400, "passed_time": 784.732184, "remaining_time": 759.9553953, "test": [ 0.9976360506, 0.007115601282 ] }, { "learn": [ 0.9985929943, 0.004781976994 ], "iteration": 25500, "passed_time": 787.3274998, "remaining_time": 756.3913736, "test": [ 0.997628994, 0.007111440734 ] }, { "learn": [ 0.9985973067, 0.004775658145 ], "iteration": 25600, "passed_time": 789.9365169, "remaining_time": 752.8479777, "test": [ 0.9976325223, 0.007108620519 ] }, { "learn": [ 0.9985984828, 0.004766830133 ], "iteration": 25700, "passed_time": 792.523944, "remaining_time": 749.2914406, "test": [ 0.9976431071, 0.007102804797 ] }, { "learn": [ 0.998601619, 0.004760667485 ], "iteration": 25800, "passed_time": 795.6896218, "remaining_time": 746.2847626, "test": [ 0.9976360506, 0.007100436385 ] }, { "learn": [ 0.9986055393, 0.004753250255 ], "iteration": 25900, "passed_time": 799.5389282, "remaining_time": 743.9129235, "test": [ 0.9976466354, 0.007096417106 ] }, { "learn": [ 0.9986055393, 0.004747456669 ], "iteration": 26000, "passed_time": 802.1545509, "remaining_time": 740.391026, "test": [ 0.9976466354, 0.007094543567 ] }, { "learn": [ 0.9986090676, 0.004739842657 ], "iteration": 26100, "passed_time": 804.76101, "remaining_time": 736.8676824, "test": [ 0.997653692, 0.007090087129 ] }, { "learn": [ 0.9986102437, 0.004734433064 ], "iteration": 26200, "passed_time": 807.3336732, "remaining_time": 733.32064, "test": [ 0.9976466354, 0.007086013582 ] }, { "learn": [ 0.9986125959, 0.004728669339 ], "iteration": 26300, "passed_time": 811.7650896, "remaining_time": 731.4558708, "test": [ 0.9976572203, 0.007083122733 ] }, { "learn": [ 0.998613772, 0.004723680492 ], "iteration": 26400, "passed_time": 814.3358795, "remaining_time": 727.9085042, "test": [ 0.9976466354, 0.007079441122 ] }, { "learn": [ 0.9986149481, 0.004717642268 ], "iteration": 26500, "passed_time": 816.9566271, "remaining_time": 724.4128063, "test": [ 0.9976466354, 0.007076130342 ] }, { "learn": [ 0.9986169083, 0.004711089884 ], "iteration": 26600, "passed_time": 819.5409483, "remaining_time": 720.8916451, "test": [ 0.9976501637, 0.007072530994 ] }, { "learn": [ 0.9986212207, 0.004704530226 ], "iteration": 26700, "passed_time": 823.6523853, "remaining_time": 718.7100455, "test": [ 0.9976431071, 0.007068895467 ] }, { "learn": [ 0.9986231808, 0.004700262658 ], "iteration": 26800, "passed_time": 826.5242528, "remaining_time": 715.4410709, "test": [ 0.9976431071, 0.007067326002 ] }, { "learn": [ 0.9986223968, 0.004693078198 ], "iteration": 26900, "passed_time": 829.1118609, "remaining_time": 711.9309644, "test": [ 0.9976431071, 0.007063518196 ] }, { "learn": [ 0.998625533, 0.004686955365 ], "iteration": 27000, "passed_time": 831.7174783, "remaining_time": 708.4430311, "test": [ 0.9976501637, 0.007059493748 ] }, { "learn": [ 0.9986271011, 0.004680268603 ], "iteration": 27100, "passed_time": 834.5503299, "remaining_time": 705.1536107, "test": [ 0.9976466354, 0.007058073735 ] }, { "learn": [ 0.9986294533, 0.004673061555 ], "iteration": 27200, "passed_time": 838.7468111, "remaining_time": 703.0104976, "test": [ 0.9976466354, 0.007055127757 ] }, { "learn": [ 0.9986329816, 0.004667139715 ], "iteration": 27300, "passed_time": 841.3807768, "remaining_time": 699.5532124, "test": [ 0.9976501637, 0.007053722818 ] }, { "learn": [ 0.9986325896, 0.004662890524 ], "iteration": 27400, "passed_time": 843.9646799, "remaining_time": 696.0606474, "test": [ 0.9976501637, 0.007051517641 ] }, { "learn": [ 0.9986345498, 0.004656588903 ], "iteration": 27500, "passed_time": 846.5821598, "remaining_time": 692.6021604, "test": [ 0.9976501637, 0.007047965239 ] }, { "learn": [ 0.9986388621, 0.0046510568 ], "iteration": 27600, "passed_time": 851.0379105, "remaining_time": 690.6415767, "test": [ 0.9976431071, 0.007043830533 ] }, { "learn": [ 0.9986392542, 0.004645388404 ], "iteration": 27700, "passed_time": 853.6494784, "remaining_time": 687.178431, "test": [ 0.9976501637, 0.007039931419 ] }, { "learn": [ 0.9986419984, 0.004638152642 ], "iteration": 27800, "passed_time": 856.2444189, "remaining_time": 683.7081348, "test": [ 0.997653692, 0.007034990014 ] }, { "learn": [ 0.9986419984, 0.004632501091 ], "iteration": 27900, "passed_time": 858.8453478, "remaining_time": 680.2488563, "test": [ 0.9976501637, 0.007032600929 ] }, { "learn": [ 0.9986439586, 0.004626009962 ], "iteration": 28000, "passed_time": 862.5932575, "remaining_time": 677.6968348, "test": [ 0.9976607486, 0.007028702246 ] }, { "learn": [ 0.9986443506, 0.004619889427 ], "iteration": 28100, "passed_time": 865.9326914, "remaining_time": 674.8179783, "test": [ 0.9976642768, 0.007025835085 ] }, { "learn": [ 0.998648663, 0.004614152119 ], "iteration": 28200, "passed_time": 868.4959438, "remaining_time": 671.3358774, "test": [ 0.9976572203, 0.007021784365 ] }, { "learn": [ 0.9986514072, 0.004609144129 ], "iteration": 28300, "passed_time": 871.087229, "remaining_time": 667.8817633, "test": [ 0.9976607486, 0.00701902531 ] }, { "learn": [ 0.9986537594, 0.004604203521 ], "iteration": 28400, "passed_time": 873.7076225, "remaining_time": 664.4558621, "test": [ 0.9976607486, 0.007016396326 ] }, { "learn": [ 0.9986557195, 0.004598801967 ], "iteration": 28500, "passed_time": 878.1452206, "remaining_time": 662.4063751, "test": [ 0.9976607486, 0.007013763035 ] }, { "learn": [ 0.9986596399, 0.004593488851 ], "iteration": 28600, "passed_time": 880.724093, "remaining_time": 658.9495076, "test": [ 0.9976642768, 0.007010506092 ] }, { "learn": [ 0.9986616, 0.004588539437 ], "iteration": 28700, "passed_time": 883.3326061, "remaining_time": 655.5207546, "test": [ 0.9976748617, 0.007009343206 ] }, { "learn": [ 0.9986639522, 0.004583233212 ], "iteration": 28800, "passed_time": 885.9299376, "remaining_time": 652.0894673, "test": [ 0.9976819183, 0.007004851881 ] }, { "learn": [ 0.9986655204, 0.004576585499 ], "iteration": 28900, "passed_time": 890.4566631, "remaining_time": 650.0724935, "test": [ 0.99767839, 0.007000249006 ] }, { "learn": [ 0.9986666965, 0.004571285017 ], "iteration": 29000, "passed_time": 893.0426038, "remaining_time": 646.6329312, "test": [ 0.9976854465, 0.00699814892 ] }, { "learn": [ 0.9986666965, 0.004565008281 ], "iteration": 29100, "passed_time": 895.6337611, "remaining_time": 643.2029818, "test": [ 0.9976748617, 0.006993943579 ] }, { "learn": [ 0.9986666965, 0.004559146548 ], "iteration": 29200, "passed_time": 898.2274859, "remaining_time": 639.7806061, "test": [ 0.99767839, 0.006991022581 ] }, { "learn": [ 0.9986706168, 0.004552905417 ], "iteration": 29300, "passed_time": 901.6483646, "remaining_time": 636.94821, "test": [ 0.9976713334, 0.006988290229 ] }, { "learn": [ 0.998672969, 0.004546831206 ], "iteration": 29400, "passed_time": 905.2929174, "remaining_time": 634.2685216, "test": [ 0.9976713334, 0.006984833873 ] }, { "learn": [ 0.9986741451, 0.004542729792 ], "iteration": 29500, "passed_time": 907.843066, "remaining_time": 630.8218369, "test": [ 0.9976678051, 0.006983298002 ] }, { "learn": [ 0.9986764973, 0.004536080931 ], "iteration": 29600, "passed_time": 910.4735447, "remaining_time": 627.4365676, "test": [ 0.9976748617, 0.006981137618 ] }, { "learn": [ 0.9986772813, 0.00453019508 ], "iteration": 29700, "passed_time": 913.0766181, "remaining_time": 624.0376509, "test": [ 0.9976819183, 0.006977975429 ] }, { "learn": [ 0.9986792415, 0.004524724231 ], "iteration": 29800, "passed_time": 917.507524, "remaining_time": 621.882973, "test": [ 0.9976748617, 0.006974737006 ] }, { "learn": [ 0.9986780654, 0.004520598699 ], "iteration": 29900, "passed_time": 920.0747054, "remaining_time": 618.4603024, "test": [ 0.9976748617, 0.006973272201 ] }, { "learn": [ 0.9986812017, 0.004514789799 ], "iteration": 30000, "passed_time": 922.6669633, "remaining_time": 615.0600513, "test": [ 0.9976889748, 0.006970284445 ] }, { "learn": [ 0.9986819857, 0.004509224771 ], "iteration": 30100, "passed_time": 925.2941212, "remaining_time": 611.6882402, "test": [ 0.9976889748, 0.00696769853 ] }, { "learn": [ 0.9986859061, 0.004505657042 ], "iteration": 30200, "passed_time": 929.7363901, "remaining_time": 609.5113005, "test": [ 0.9976889748, 0.006967079617 ] }, { "learn": [ 0.9986882583, 0.004501422016 ], "iteration": 30300, "passed_time": 932.3238731, "remaining_time": 606.1135928, "test": [ 0.9976854465, 0.006964784855 ] }, { "learn": [ 0.9986910025, 0.004494682038 ], "iteration": 30400, "passed_time": 934.991255, "remaining_time": 602.7727248, "test": [ 0.9976889748, 0.006960865067 ] }, { "learn": [ 0.9986917866, 0.004490309571 ], "iteration": 30500, "passed_time": 937.5950138, "remaining_time": 599.3955993, "test": [ 0.9976889748, 0.006958735262 ] }, { "learn": [ 0.9986949228, 0.004484085668 ], "iteration": 30600, "passed_time": 940.783636, "remaining_time": 596.3942928, "test": [ 0.9976854465, 0.006956350484 ] }, { "learn": [ 0.9986953149, 0.004479341075 ], "iteration": 30700, "passed_time": 944.629579, "remaining_time": 593.8049655, "test": [ 0.9976889748, 0.006955315946 ] }, { "learn": [ 0.9986957069, 0.004472983559 ], "iteration": 30800, "passed_time": 947.253298, "remaining_time": 590.4456371, "test": [ 0.9976819183, 0.006951257904 ] }, { "learn": [ 0.9987000192, 0.004468590418 ], "iteration": 30900, "passed_time": 949.8174503, "remaining_time": 587.0542533, "test": [ 0.9976819183, 0.006948241292 ] }, { "learn": [ 0.9986984511, 0.004463062143 ], "iteration": 31000, "passed_time": 952.4253612, "remaining_time": 583.695024, "test": [ 0.9976854465, 0.006947392385 ] }, { "learn": [ 0.9987019794, 0.004456662897 ], "iteration": 31100, "passed_time": 956.8433274, "remaining_time": 581.4405339, "test": [ 0.9976925031, 0.006943768487 ] }, { "learn": [ 0.9987011953, 0.004452655663 ], "iteration": 31200, "passed_time": 959.4021276, "remaining_time": 578.0520046, "test": [ 0.9976889748, 0.006942473807 ] }, { "learn": [ 0.9987027635, 0.004446931755 ], "iteration": 31300, "passed_time": 962.0385188, "remaining_time": 574.7151293, "test": [ 0.9976960314, 0.006941381986 ] }, { "learn": [ 0.9987031555, 0.004442683329 ], "iteration": 31400, "passed_time": 964.6407867, "remaining_time": 571.3625041, "test": [ 0.9976995597, 0.006939929671 ] }, { "learn": [ 0.9987035475, 0.004437219372 ], "iteration": 31500, "passed_time": 968.6455756, "remaining_time": 568.8382751, "test": [ 0.9976925031, 0.006937212393 ] }, { "learn": [ 0.9987062918, 0.004432276849 ], "iteration": 31600, "passed_time": 971.6088456, "remaining_time": 565.6982738, "test": [ 0.9976925031, 0.006935096802 ] }, { "learn": [ 0.998709036, 0.00442794458 ], "iteration": 31700, "passed_time": 974.2285865, "remaining_time": 562.3610897, "test": [ 0.9976995597, 0.006932837357 ] }, { "learn": [ 0.998709036, 0.0044238826 ], "iteration": 31800, "passed_time": 976.8120455, "remaining_time": 559.0076544, "test": [ 0.9976995597, 0.006929832373 ] }, { "learn": [ 0.9987129563, 0.004419342447 ], "iteration": 31900, "passed_time": 979.5145744, "remaining_time": 555.7266005, "test": [ 0.9977066162, 0.006927671128 ] }, { "learn": [ 0.9987160926, 0.004415420205 ], "iteration": 32000, "passed_time": 983.7263751, "remaining_time": 553.298054, "test": [ 0.997703088, 0.006926417364 ] }, { "learn": [ 0.9987168767, 0.004410101728 ], "iteration": 32100, "passed_time": 986.339348, "remaining_time": 549.9669166, "test": [ 0.9976995597, 0.0069236652 ] }, { "learn": [ 0.9987180528, 0.004405331868 ], "iteration": 32200, "passed_time": 988.9086749, "remaining_time": 546.6161145, "test": [ 0.9977066162, 0.006919673917 ] }, { "learn": [ 0.9987227572, 0.004400522958 ], "iteration": 32300, "passed_time": 991.508576, "remaining_time": 543.286904, "test": [ 0.9977101445, 0.006916750765 ] }, { "learn": [ 0.9987227572, 0.00439557699 ], "iteration": 32400, "passed_time": 995.9867948, "remaining_time": 540.9824265, "test": [ 0.9977066162, 0.006913629062 ] }, { "learn": [ 0.9987270695, 0.004391213328 ], "iteration": 32500, "passed_time": 998.5444134, "remaining_time": 537.6304941, "test": [ 0.9977101445, 0.006912001022 ] }, { "learn": [ 0.9987258934, 0.004386116902 ], "iteration": 32600, "passed_time": 1001.138324, "remaining_time": 534.3028034, "test": [ 0.9977101445, 0.006907793527 ] }, { "learn": [ 0.9987270695, 0.004381688922 ], "iteration": 32700, "passed_time": 1003.712186, "remaining_time": 530.968995, "test": [ 0.997703088, 0.006905377739 ] }, { "learn": [ 0.9987282456, 0.004377555732 ], "iteration": 32800, "passed_time": 1007.018604, "remaining_time": 528.0239311, "test": [ 0.997703088, 0.00690423768 ] }, { "learn": [ 0.9987321659, 0.00437181919 ], "iteration": 32900, "passed_time": 1010.70771, "remaining_time": 525.2755579, "test": [ 0.997703088, 0.006901383871 ] }, { "learn": [ 0.998733342, 0.004368000699 ], "iteration": 33000, "passed_time": 1013.329917, "remaining_time": 521.9719176, "test": [ 0.997703088, 0.006900080146 ] }, { "learn": [ 0.9987349102, 0.004363228159 ], "iteration": 33100, "passed_time": 1015.903393, "remaining_time": 518.6475162, "test": [ 0.9976995597, 0.006897781508 ] }, { "learn": [ 0.9987360863, 0.004358640533 ], "iteration": 33200, "passed_time": 1018.501361, "remaining_time": 515.3400308, "test": [ 0.9977066162, 0.006896817174 ] }, { "learn": [ 0.9987364783, 0.004354815533 ], "iteration": 33300, "passed_time": 1023.026671, "remaining_time": 513.0032847, "test": [ 0.9977136728, 0.006894444886 ] }, { "learn": [ 0.9987372624, 0.004350810979 ], "iteration": 33400, "passed_time": 1025.620434, "remaining_time": 509.6935294, "test": [ 0.9977101445, 0.006892582976 ] }, { "learn": [ 0.9987400066, 0.004345659423 ], "iteration": 33500, "passed_time": 1028.248059, "remaining_time": 506.4047259, "test": [ 0.9977066162, 0.006890964842 ] }, { "learn": [ 0.9987400066, 0.004341062226 ], "iteration": 33600, "passed_time": 1030.837663, "remaining_time": 503.1013014, "test": [ 0.9977066162, 0.006888631317 ] }, { "learn": [ 0.9987419668, 0.004336280881 ], "iteration": 33700, "passed_time": 1034.96222, "remaining_time": 500.5444712, "test": [ 0.9977136728, 0.006886535968 ] }, { "learn": [ 0.9987431429, 0.004333259855 ], "iteration": 33800, "passed_time": 1037.914609, "remaining_time": 497.4166077, "test": [ 0.9977207294, 0.006884865719 ] }, { "learn": [ 0.998745103, 0.004329521761 ], "iteration": 33900, "passed_time": 1040.497646, "remaining_time": 494.1143803, "test": [ 0.9977207294, 0.006883418572 ] }, { "learn": [ 0.998744319, 0.004323439893 ], "iteration": 34000, "passed_time": 1043.100676, "remaining_time": 490.8257909, "test": [ 0.9977242576, 0.006879653405 ] }, { "learn": [ 0.9987466712, 0.004319454481 ], "iteration": 34100, "passed_time": 1045.8558, "remaining_time": 487.6121336, "test": [ 0.9977242576, 0.006877017961 ] }, { "learn": [ 0.9987462791, 0.00431486341 ], "iteration": 34200, "passed_time": 1050.067475, "remaining_time": 485.0740048, "test": [ 0.9977242576, 0.00687439716 ] }, { "learn": [ 0.9987490233, 0.004310105418 ], "iteration": 34300, "passed_time": 1052.636552, "remaining_time": 481.7743283, "test": [ 0.9977277859, 0.006871958114 ] }, { "learn": [ 0.9987509835, 0.00430578272 ], "iteration": 34400, "passed_time": 1055.269609, "remaining_time": 478.5079108, "test": [ 0.9977242576, 0.006869221455 ] }, { "learn": [ 0.9987525516, 0.004300144569 ], "iteration": 34500, "passed_time": 1057.94177, "remaining_time": 475.2627311, "test": [ 0.9977348425, 0.006867148503 ] }, { "learn": [ 0.9987545118, 0.004296360151 ], "iteration": 34600, "passed_time": 1062.444742, "remaining_time": 472.8356576, "test": [ 0.9977348425, 0.006865481269 ] }, { "learn": [ 0.9987556879, 0.004291884315 ], "iteration": 34700, "passed_time": 1065.021216, "remaining_time": 469.5472635, "test": [ 0.9977348425, 0.006862359996 ] }, { "learn": [ 0.9987584321, 0.004287184899 ], "iteration": 34800, "passed_time": 1067.592296, "remaining_time": 466.2606047, "test": [ 0.9977313142, 0.006860343465 ] }, { "learn": [ 0.998757256, 0.004283896647 ], "iteration": 34900, "passed_time": 1070.174346, "remaining_time": 462.9827929, "test": [ 0.9977242576, 0.00685982232 ] }, { "learn": [ 0.9987584321, 0.004280137114 ], "iteration": 35000, "passed_time": 1073.899225, "remaining_time": 460.1986938, "test": [ 0.9977277859, 0.006858642206 ] }, { "learn": [ 0.9987584321, 0.004276632172 ], "iteration": 35100, "passed_time": 1077.218185, "remaining_time": 457.2369372, "test": [ 0.9977313142, 0.00685710978 ] }, { "learn": [ 0.9987607843, 0.004272731369 ], "iteration": 35200, "passed_time": 1079.820529, "remaining_time": 453.9718761, "test": [ 0.9977313142, 0.006854790469 ] }, { "learn": [ 0.9987639206, 0.004268589757 ], "iteration": 35300, "passed_time": 1082.406658, "remaining_time": 450.7038174, "test": [ 0.9977383708, 0.006852437132 ] }, { "learn": [ 0.9987674489, 0.004263707341 ], "iteration": 35400, "passed_time": 1085.059889, "remaining_time": 447.4672839, "test": [ 0.9977348425, 0.0068499085 ] }, { "learn": [ 0.9987705852, 0.004258460074 ], "iteration": 35500, "passed_time": 1089.465638, "remaining_time": 444.9497842, "test": [ 0.9977348425, 0.006846604181 ] }, { "learn": [ 0.9987713692, 0.004254261035 ], "iteration": 35600, "passed_time": 1092.053342, "remaining_time": 441.6863591, "test": [ 0.9977313142, 0.006846168314 ] }, { "learn": [ 0.9987729373, 0.004250608315 ], "iteration": 35700, "passed_time": 1094.646159, "remaining_time": 438.4287674, "test": [ 0.9977313142, 0.00684431631 ] }, { "learn": [ 0.9987752895, 0.004246879793 ], "iteration": 35800, "passed_time": 1097.208802, "remaining_time": 435.1629223, "test": [ 0.9977242576, 0.00684369955 ] }, { "learn": [ 0.9987741134, 0.004242946448 ], "iteration": 35900, "passed_time": 1101.614961, "remaining_time": 432.6249781, "test": [ 0.9977242576, 0.00684161583 ] }, { "learn": [ 0.9987737214, 0.004238170462 ], "iteration": 36000, "passed_time": 1104.192765, "remaining_time": 429.3656985, "test": [ 0.9977313142, 0.006839930937 ] }, { "learn": [ 0.9987784258, 0.0042335591 ], "iteration": 36100, "passed_time": 1106.828629, "remaining_time": 426.1325478, "test": [ 0.9977313142, 0.006837360959 ] }, { "learn": [ 0.9987760736, 0.004229495205 ], "iteration": 36200, "passed_time": 1109.445511, "remaining_time": 422.8954618, "test": [ 0.9977242576, 0.006834639805 ] }, { "learn": [ 0.998780778, 0.004224922128 ], "iteration": 36300, "passed_time": 1112.80681, "remaining_time": 419.9427146, "test": [ 0.9977313142, 0.006833115132 ] }, { "learn": [ 0.9987764656, 0.004220196678 ], "iteration": 36400, "passed_time": 1116.375559, "remaining_time": 417.0652243, "test": [ 0.9977348425, 0.006830791513 ] }, { "learn": [ 0.9987780338, 0.004216408431 ], "iteration": 36500, "passed_time": 1119.00005, "remaining_time": 413.8347355, "test": [ 0.9977348425, 0.00682850192 ] }, { "learn": [ 0.9987799939, 0.004211897374 ], "iteration": 36600, "passed_time": 1121.61342, "remaining_time": 410.6034865, "test": [ 0.9977348425, 0.006827024193 ] }, { "learn": [ 0.99878117, 0.00420897359 ], "iteration": 36700, "passed_time": 1124.176307, "remaining_time": 407.3573121, "test": [ 0.9977277859, 0.006825799286 ] }, { "learn": [ 0.99878117, 0.004205322019 ], "iteration": 36800, "passed_time": 1128.664834, "remaining_time": 404.8054983, "test": [ 0.9977348425, 0.006824508913 ] }, { "learn": [ 0.9987835222, 0.004201270758 ], "iteration": 36900, "passed_time": 1131.287736, "remaining_time": 401.5809344, "test": [ 0.9977313142, 0.006822079343 ] }, { "learn": [ 0.9987854824, 0.004196917433 ], "iteration": 37000, "passed_time": 1133.872617, "remaining_time": 398.3462651, "test": [ 0.9977383708, 0.006819844878 ] }, { "learn": [ 0.9987878346, 0.004192806066 ], "iteration": 37100, "passed_time": 1136.494938, "remaining_time": 395.1281153, "test": [ 0.9977383708, 0.006817597063 ] }, { "learn": [ 0.9987913629, 0.004187984139 ], "iteration": 37200, "passed_time": 1140.927167, "remaining_time": 392.5358678, "test": [ 0.9977418991, 0.006815411267 ] }, { "learn": [ 0.998792931, 0.00418427361 ], "iteration": 37300, "passed_time": 1143.65376, "remaining_time": 389.3530763, "test": [ 0.9977383708, 0.006814276807 ] }, { "learn": [ 0.9987937151, 0.004180539727 ], "iteration": 37400, "passed_time": 1146.246091, "remaining_time": 386.1274967, "test": [ 0.9977454273, 0.00681295284 ] }, { "learn": [ 0.9987948912, 0.004177827274 ], "iteration": 37500, "passed_time": 1148.837828, "remaining_time": 382.9050962, "test": [ 0.9977454273, 0.006811669358 ] }, { "learn": [ 0.9987964593, 0.004173069282 ], "iteration": 37600, "passed_time": 1151.89775, "remaining_time": 379.8404352, "test": [ 0.9977348425, 0.006809007641 ] }, { "learn": [ 0.9987964593, 0.004168775681 ], "iteration": 37700, "passed_time": 1155.775728, "remaining_time": 377.0426695, "test": [ 0.9977418991, 0.006805921686 ] }, { "learn": [ 0.9988007717, 0.004164245481 ], "iteration": 37800, "passed_time": 1158.37851, "remaining_time": 373.8276617, "test": [ 0.9977489556, 0.006802935222 ] }, { "learn": [ 0.9988015557, 0.004161113047 ], "iteration": 37900, "passed_time": 1160.961887, "remaining_time": 370.6096902, "test": [ 0.9977454273, 0.006801944615 ] }, { "learn": [ 0.9988023398, 0.004157923952 ], "iteration": 38000, "passed_time": 1163.533804, "remaining_time": 367.39144, "test": [ 0.9977418991, 0.006800685683 ] }, { "learn": [ 0.9988027318, 0.004155228727 ], "iteration": 38100, "passed_time": 1167.95113, "remaining_time": 364.7529066, "test": [ 0.9977489556, 0.006799738577 ] }, { "learn": [ 0.9988035159, 0.004152133812 ], "iteration": 38200, "passed_time": 1170.514866, "remaining_time": 361.5325489, "test": [ 0.9977489556, 0.00679760102 ] }, { "learn": [ 0.9988023398, 0.004147518238 ], "iteration": 38300, "passed_time": 1173.155623, "remaining_time": 358.3391459, "test": [ 0.9977489556, 0.006794777791 ] }, { "learn": [ 0.9988043, 0.004144816504 ], "iteration": 38400, "passed_time": 1175.720158, "remaining_time": 355.1255985, "test": [ 0.9977560122, 0.006794064554 ] }, { "learn": [ 0.9988062601, 0.004140026737 ], "iteration": 38500, "passed_time": 1179.738293, "remaining_time": 352.3495658, "test": [ 0.9977560122, 0.006791384747 ] }, { "learn": [ 0.9988093964, 0.004136597981 ], "iteration": 38600, "passed_time": 1182.798354, "remaining_time": 349.2841748, "test": [ 0.9977560122, 0.006789736464 ] }, { "learn": [ 0.9988105725, 0.004133461336 ], "iteration": 38700, "passed_time": 1185.348287, "remaining_time": 346.0698765, "test": [ 0.9977630688, 0.006788696327 ] }, { "learn": [ 0.9988125327, 0.004129373322 ], "iteration": 38800, "passed_time": 1187.959439, "remaining_time": 342.8766723, "test": [ 0.9977489556, 0.006787862925 ] }, { "learn": [ 0.9988141008, 0.004125168923 ], "iteration": 38900, "passed_time": 1190.591848, "remaining_time": 339.6925252, "test": [ 0.9977560122, 0.006787498554 ] }, { "learn": [ 0.998816453, 0.004121735191 ], "iteration": 39000, "passed_time": 1194.890819, "remaining_time": 336.9812086, "test": [ 0.9977595405, 0.006785758101 ] }, { "learn": [ 0.9988152769, 0.004117605447 ], "iteration": 39100, "passed_time": 1197.486682, "remaining_time": 333.7870476, "test": [ 0.9977560122, 0.006784580571 ] }, { "learn": [ 0.998816845, 0.004113818732 ], "iteration": 39200, "passed_time": 1200.095629, "remaining_time": 330.5995433, "test": [ 0.9977560122, 0.006783973717 ] }, { "learn": [ 0.9988184132, 0.004110823356 ], "iteration": 39300, "passed_time": 1202.694711, "remaining_time": 327.4122978, "test": [ 0.9977560122, 0.006784034876 ] }, { "learn": [ 0.9988199813, 0.00410713886 ], "iteration": 39400, "passed_time": 1207.11918, "remaining_time": 324.7190728, "test": [ 0.9977595405, 0.006781412353 ] }, { "learn": [ 0.9988223335, 0.004104109029 ], "iteration": 39500, "passed_time": 1209.700252, "remaining_time": 321.5271245, "test": [ 0.9977630688, 0.006780960981 ] }, { "learn": [ 0.9988239016, 0.004099272171 ], "iteration": 39600, "passed_time": 1212.335846, "remaining_time": 318.3525786, "test": [ 0.9977595405, 0.006778789829 ] }, { "learn": [ 0.9988242936, 0.004096033689 ], "iteration": 39700, "passed_time": 1214.921227, "remaining_time": 315.1677217, "test": [ 0.9977701253, 0.006777271617 ] }, { "learn": [ 0.9988250777, 0.004093324681 ], "iteration": 39800, "passed_time": 1218.072114, "remaining_time": 312.1307879, "test": [ 0.9977736536, 0.006776821106 ] }, { "learn": [ 0.9988246857, 0.004088225192 ], "iteration": 39900, "passed_time": 1221.91791, "remaining_time": 309.2691655, "test": [ 0.9977736536, 0.006774761505 ] }, { "learn": [ 0.9988262538, 0.004084345446 ], "iteration": 40000, "passed_time": 1224.505197, "remaining_time": 306.0880344, "test": [ 0.9977736536, 0.00677303182 ] }, { "learn": [ 0.998828998, 0.004080446174 ], "iteration": 40100, "passed_time": 1227.106143, "remaining_time": 302.9132368, "test": [ 0.9977771819, 0.006772510675 ] }, { "learn": [ 0.998828606, 0.004076964586 ], "iteration": 40200, "passed_time": 1229.672593, "remaining_time": 299.7328856, "test": [ 0.9977842385, 0.006770398959 ] }, { "learn": [ 0.998828606, 0.004073270136 ], "iteration": 40300, "passed_time": 1234.172334, "remaining_time": 297.0208549, "test": [ 0.9977771819, 0.006769100834 ] }, { "learn": [ 0.9988321343, 0.004070693975 ], "iteration": 40400, "passed_time": 1236.7436, "remaining_time": 293.8417815, "test": [ 0.9977701253, 0.006768834232 ] }, { "learn": [ 0.9988333104, 0.004067896148 ], "iteration": 40500, "passed_time": 1239.336839, "remaining_time": 290.6708632, "test": [ 0.9977771819, 0.00676814296 ] }, { "learn": [ 0.9988329184, 0.004064646563 ], "iteration": 40600, "passed_time": 1241.923288, "remaining_time": 287.5012187, "test": [ 0.9977701253, 0.006767799694 ] }, { "learn": [ 0.9988329184, 0.004060097222 ], "iteration": 40700, "passed_time": 1246.060264, "remaining_time": 284.6886905, "test": [ 0.9977771819, 0.006764306728 ] }, { "learn": [ 0.9988340945, 0.004057064327 ], "iteration": 40800, "passed_time": 1248.917468, "remaining_time": 281.5811324, "test": [ 0.9977736536, 0.006761455073 ] }, { "learn": [ 0.9988356626, 0.004054308613 ], "iteration": 40900, "passed_time": 1251.486165, "remaining_time": 278.4106163, "test": [ 0.9977736536, 0.006760981735 ] }, { "learn": [ 0.9988364467, 0.004051202595 ], "iteration": 41000, "passed_time": 1254.070785, "remaining_time": 275.2465305, "test": [ 0.9977736536, 0.006760463605 ] }, { "learn": [ 0.9988368387, 0.004048026134 ], "iteration": 41100, "passed_time": 1256.766702, "remaining_time": 272.1093618, "test": [ 0.9977771819, 0.00675969007 ] }, { "learn": [ 0.9988364467, 0.004045519651 ], "iteration": 41200, "passed_time": 1261.060243, "remaining_time": 269.3155282, "test": [ 0.9977771819, 0.006758798524 ] }, { "learn": [ 0.9988380148, 0.004041831709 ], "iteration": 41300, "passed_time": 1263.67449, "remaining_time": 266.1607318, "test": [ 0.9977771819, 0.006757854864 ] }, { "learn": [ 0.9988411511, 0.004038161762 ], "iteration": 41400, "passed_time": 1266.2749, "remaining_time": 263.0056729, "test": [ 0.9977701253, 0.00675604593 ] }, { "learn": [ 0.9988411511, 0.00403452627 ], "iteration": 41500, "passed_time": 1268.855422, "remaining_time": 259.849214, "test": [ 0.9977701253, 0.006754225367 ] }, { "learn": [ 0.9988411511, 0.004031737631 ], "iteration": 41600, "passed_time": 1273.326669, "remaining_time": 257.0772505, "test": [ 0.9977771819, 0.006753081862 ] }, { "learn": [ 0.9988442873, 0.00402833912 ], "iteration": 41700, "passed_time": 1275.955019, "remaining_time": 253.9303782, "test": [ 0.9977771819, 0.00675180441 ] }, { "learn": [ 0.9988454634, 0.004023740391 ], "iteration": 41800, "passed_time": 1278.562734, "remaining_time": 250.7819397, "test": [ 0.9977807102, 0.00674973878 ] }, { "learn": [ 0.9988470315, 0.004020668447 ], "iteration": 41900, "passed_time": 1281.141382, "remaining_time": 247.6304636, "test": [ 0.9977771819, 0.006747554276 ] }, { "learn": [ 0.9988482076, 0.004017151637 ], "iteration": 42000, "passed_time": 1284.772023, "remaining_time": 244.6820651, "test": [ 0.9977842385, 0.006746703647 ] }, { "learn": [ 0.9988482076, 0.004014447606 ], "iteration": 42100, "passed_time": 1288.205301, "remaining_time": 241.6933962, "test": [ 0.9977807102, 0.006746102392 ] }, { "learn": [ 0.9988493837, 0.004010616864 ], "iteration": 42200, "passed_time": 1290.810229, "remaining_time": 238.5495362, "test": [ 0.9977807102, 0.006744638878 ] }, { "learn": [ 0.9988505598, 0.004007838561 ], "iteration": 42300, "passed_time": 1293.39569, "remaining_time": 235.4046812, "test": [ 0.9977877667, 0.006743052615 ] }, { "learn": [ 0.9988552642, 0.004003413644 ], "iteration": 42400, "passed_time": 1296.02421, "remaining_time": 232.2701817, "test": [ 0.9977877667, 0.006741038668 ] }, { "learn": [ 0.9988552642, 0.004001023546 ], "iteration": 42500, "passed_time": 1300.464272, "remaining_time": 229.4576969, "test": [ 0.9977877667, 0.006739842188 ] }, { "learn": [ 0.9988568324, 0.003997216157 ], "iteration": 42600, "passed_time": 1303.053628, "remaining_time": 226.3161379, "test": [ 0.9977983516, 0.006737654239 ] }, { "learn": [ 0.9988564403, 0.003994043907 ], "iteration": 42700, "passed_time": 1305.674541, "remaining_time": 223.1825595, "test": [ 0.9977948233, 0.006735492132 ] }, { "learn": [ 0.9988568324, 0.003990364771 ], "iteration": 42800, "passed_time": 1308.248421, "remaining_time": 220.0434658, "test": [ 0.9977877667, 0.006732640908 ] }, { "learn": [ 0.9988599686, 0.003986698269 ], "iteration": 42900, "passed_time": 1312.590612, "remaining_time": 217.1996166, "test": [ 0.9977877667, 0.006731626182 ] }, { "learn": [ 0.9988603607, 0.003983652358 ], "iteration": 43000, "passed_time": 1315.272531, "remaining_time": 214.0785667, "test": [ 0.9978018799, 0.006730543836 ] }, { "learn": [ 0.9988599686, 0.003979448342 ], "iteration": 43100, "passed_time": 1317.847517, "remaining_time": 210.9424381, "test": [ 0.9977948233, 0.006729359415 ] }, { "learn": [ 0.998864673, 0.003975558259 ], "iteration": 43200, "passed_time": 1320.433573, "remaining_time": 207.8106494, "test": [ 0.9977948233, 0.006728259842 ] }, { "learn": [ 0.9988658491, 0.00397228111 ], "iteration": 43300, "passed_time": 1323.469562, "remaining_time": 204.7509894, "test": [ 0.9977948233, 0.006726381565 ] }, { "learn": [ 0.9988650651, 0.003969697675 ], "iteration": 43400, "passed_time": 1327.353939, "remaining_time": 201.8204337, "test": [ 0.9977983516, 0.006725212649 ] }, { "learn": [ 0.9988650651, 0.003966744029 ], "iteration": 43500, "passed_time": 1329.945955, "remaining_time": 198.6924154, "test": [ 0.9977948233, 0.006724182418 ] }, { "learn": [ 0.9988685934, 0.00396365256 ], "iteration": 43600, "passed_time": 1332.539265, "remaining_time": 195.5670457, "test": [ 0.9977877667, 0.006723086721 ] }, { "learn": [ 0.9988685934, 0.003960277403 ], "iteration": 43700, "passed_time": 1335.142542, "remaining_time": 192.4455475, "test": [ 0.9977877667, 0.006721101201 ] }, { "learn": [ 0.9988701615, 0.003957505991 ], "iteration": 43800, "passed_time": 1339.636207, "remaining_time": 189.5939555, "test": [ 0.9977948233, 0.006719510631 ] }, { "learn": [ 0.9988717296, 0.003953359785 ], "iteration": 43900, "passed_time": 1342.244027, "remaining_time": 186.4728894, "test": [ 0.9977948233, 0.006717556121 ] }, { "learn": [ 0.9988709455, 0.003949648873 ], "iteration": 44000, "passed_time": 1344.868943, "remaining_time": 183.3564871, "test": [ 0.997791295, 0.00671487373 ] }, { "learn": [ 0.9988717296, 0.003946378615 ], "iteration": 44100, "passed_time": 1347.460609, "remaining_time": 180.2378661, "test": [ 0.9977983516, 0.006712940324 ] }, { "learn": [ 0.9988732977, 0.003941140536 ], "iteration": 44200, "passed_time": 1351.683115, "remaining_time": 177.3355894, "test": [ 0.9978018799, 0.006710965571 ] }, { "learn": [ 0.9988752579, 0.003937777247 ], "iteration": 44300, "passed_time": 1354.516048, "remaining_time": 174.2485939, "test": [ 0.9977983516, 0.00671039791 ] }, { "learn": [ 0.9988752579, 0.003935510042 ], "iteration": 44400, "passed_time": 1357.106526, "remaining_time": 171.1321691, "test": [ 0.9978018799, 0.006708939565 ] }, { "learn": [ 0.998876826, 0.003933374918 ], "iteration": 44500, "passed_time": 1359.65811, "remaining_time": 168.0133019, "test": [ 0.9978018799, 0.006708756949 ] }, { "learn": [ 0.9988752579, 0.003929696165 ], "iteration": 44600, "passed_time": 1362.445828, "remaining_time": 164.9255628, "test": [ 0.9978054082, 0.006707221078 ] }, { "learn": [ 0.9988776101, 0.003926842441 ], "iteration": 44700, "passed_time": 1366.629765, "remaining_time": 162.0046783, "test": [ 0.9978054082, 0.006705678316 ] }, { "learn": [ 0.9988807464, 0.00392350978 ], "iteration": 44800, "passed_time": 1369.190302, "remaining_time": 158.8897654, "test": [ 0.9978054082, 0.006704477097 ] }, { "learn": [ 0.9988787862, 0.003920705061 ], "iteration": 44900, "passed_time": 1371.759843, "remaining_time": 155.7783444, "test": [ 0.9978089364, 0.00670317811 ] }, { "learn": [ 0.9988815304, 0.003916867427 ], "iteration": 45000, "passed_time": 1374.391907, "remaining_time": 152.676277, "test": [ 0.9978018799, 0.006702108255 ] }, { "learn": [ 0.9988807464, 0.003913471213 ], "iteration": 45100, "passed_time": 1378.762987, "remaining_time": 149.7651909, "test": [ 0.9977983516, 0.0067014579 ] }, { "learn": [ 0.9988811384, 0.003910195979 ], "iteration": 45200, "passed_time": 1381.345095, "remaining_time": 146.6577091, "test": [ 0.9977983516, 0.006698679894 ] }, { "learn": [ 0.9988815304, 0.003906685677 ], "iteration": 45300, "passed_time": 1383.940495, "remaining_time": 143.5539257, "test": [ 0.9978018799, 0.006697566108 ] }, { "learn": [ 0.9988823145, 0.003903893592 ], "iteration": 45400, "passed_time": 1386.530592, "remaining_time": 140.4518445, "test": [ 0.9978054082, 0.006695904042 ] }, { "learn": [ 0.9988823145, 0.003900756947 ], "iteration": 45500, "passed_time": 1389.828125, "remaining_time": 137.4219629, "test": [ 0.9978089364, 0.006694179094 ] }, { "learn": [ 0.9988823145, 0.003897505831 ], "iteration": 45600, "passed_time": 1393.52941, "remaining_time": 134.4298562, "test": [ 0.9978124647, 0.006692517459 ] }, { "learn": [ 0.9988862348, 0.003894835873 ], "iteration": 45700, "passed_time": 1396.125176, "remaining_time": 131.3306521, "test": [ 0.9978089364, 0.00669050179 ] }, { "learn": [ 0.9988846667, 0.003891547622 ], "iteration": 45800, "passed_time": 1398.724907, "remaining_time": 128.2340098, "test": [ 0.9978089364, 0.006688701901 ] }, { "learn": [ 0.9988870189, 0.003888690836 ], "iteration": 45900, "passed_time": 1401.259039, "remaining_time": 125.1336747, "test": [ 0.9978089364, 0.006687879697 ] }, { "learn": [ 0.998888195, 0.003884678625 ], "iteration": 46000, "passed_time": 1405.721819, "remaining_time": 122.2034641, "test": [ 0.9978089364, 0.006685325224 ] }, { "learn": [ 0.9988901552, 0.003882055374 ], "iteration": 46100, "passed_time": 1408.332217, "remaining_time": 119.1099393, "test": [ 0.9978089364, 0.006683340565 ] }, { "learn": [ 0.9988905472, 0.003879438632 ], "iteration": 46200, "passed_time": 1410.934686, "remaining_time": 116.017854, "test": [ 0.9978089364, 0.006682908574 ] }, { "learn": [ 0.9988909392, 0.003876978473 ], "iteration": 46300, "passed_time": 1413.552727, "remaining_time": 112.9291276, "test": [ 0.9978124647, 0.006682136762 ] }, { "learn": [ 0.9988905472, 0.003873921842 ], "iteration": 46400, "passed_time": 1417.793507, "remaining_time": 109.9682945, "test": [ 0.9978089364, 0.006681626384 ] }, { "learn": [ 0.9988925074, 0.003871478529 ], "iteration": 46500, "passed_time": 1420.657931, "remaining_time": 106.8983914, "test": [ 0.9978124647, 0.006679820465 ] }, { "learn": [ 0.9988940755, 0.003868542494 ], "iteration": 46600, "passed_time": 1423.221651, "remaining_time": 103.8074374, "test": [ 0.997815993, 0.006678145048 ] }, { "learn": [ 0.9988948595, 0.003865434179 ], "iteration": 46700, "passed_time": 1425.818444, "remaining_time": 100.7210776, "test": [ 0.997815993, 0.006677094574 ] }, { "learn": [ 0.9988987799, 0.003861879851 ], "iteration": 46800, "passed_time": 1428.797546, "remaining_time": 97.66294203, "test": [ 0.9978195213, 0.0066758098 ] }, { "learn": [ 0.998899956, 0.003858507373 ], "iteration": 46900, "passed_time": 1432.844876, "remaining_time": 94.67572695, "test": [ 0.997815993, 0.006674056857 ] }, { "learn": [ 0.9989011321, 0.003855467205 ], "iteration": 47000, "passed_time": 1435.437617, "remaining_time": 91.59118768, "test": [ 0.997815993, 0.00667498372 ] }, { "learn": [ 0.99890074, 0.003853016617 ], "iteration": 47100, "passed_time": 1438.014329, "remaining_time": 88.50775017, "test": [ 0.9978089364, 0.006673586103 ] }, { "learn": [ 0.9989019161, 0.003850643364 ], "iteration": 47200, "passed_time": 1440.587964, "remaining_time": 85.42627723, "test": [ 0.997815993, 0.00667285047 ] }, { "learn": [ 0.9989050524, 0.003847227625 ], "iteration": 47300, "passed_time": 1444.898559, "remaining_time": 82.44606269, "test": [ 0.997815993, 0.006670594902 ] }, { "learn": [ 0.9989050524, 0.003844553839 ], "iteration": 47400, "passed_time": 1447.454684, "remaining_time": 79.3640371, "test": [ 0.9978195213, 0.006671019571 ] }, { "learn": [ 0.9989074046, 0.003841844065 ], "iteration": 47500, "passed_time": 1450.026776, "remaining_time": 76.28506587, "test": [ 0.9978195213, 0.006670503163 ] }, { "learn": [ 0.9989066205, 0.003839097539 ], "iteration": 47600, "passed_time": 1452.604251, "remaining_time": 73.20849556, "test": [ 0.9978089364, 0.006669258875 ] }, { "learn": [ 0.9989074046, 0.003835942134 ], "iteration": 47700, "passed_time": 1456.124141, "remaining_time": 70.17943858, "test": [ 0.9978195213, 0.006668943603 ] }, { "learn": [ 0.9989085807, 0.003833868265 ], "iteration": 47800, "passed_time": 1459.510306, "remaining_time": 67.14217619, "test": [ 0.9978124647, 0.006668810518 ] }, { "learn": [ 0.9989085807, 0.003830147782 ], "iteration": 47900, "passed_time": 1462.087459, "remaining_time": 64.06800643, "test": [ 0.9978265778, 0.006666849116 ] }, { "learn": [ 0.9989097568, 0.003826989698 ], "iteration": 48000, "passed_time": 1464.683721, "remaining_time": 60.99670337, "test": [ 0.9978265778, 0.006666480438 ] }, { "learn": [ 0.998911717, 0.00382436415 ], "iteration": 48100, "passed_time": 1467.26682, "remaining_time": 57.92685579, "test": [ 0.9978301061, 0.006665327028 ] }, { "learn": [ 0.9989128931, 0.003821965246 ], "iteration": 48200, "passed_time": 1471.570291, "remaining_time": 54.92323714, "test": [ 0.9978301061, 0.006664147344 ] }, { "learn": [ 0.9989152453, 0.003819492453 ], "iteration": 48300, "passed_time": 1474.175454, "remaining_time": 51.85449775, "test": [ 0.9978336344, 0.006662886689 ] }, { "learn": [ 0.9989152453, 0.00381638031 ], "iteration": 48400, "passed_time": 1476.763114, "remaining_time": 48.7870957, "test": [ 0.9978301061, 0.006661547217 ] }, { "learn": [ 0.9989148532, 0.00381374634 ], "iteration": 48500, "passed_time": 1479.31967, "remaining_time": 45.72071061, "test": [ 0.9978301061, 0.006660188363 ] }, { "learn": [ 0.9989172054, 0.003811292306 ], "iteration": 48600, "passed_time": 1483.399081, "remaining_time": 42.70025956, "test": [ 0.9978230496, 0.006659431625 ] }, { "learn": [ 0.9989179895, 0.003808645319 ], "iteration": 48700, "passed_time": 1486.246912, "remaining_time": 39.64260978, "test": [ 0.9978301061, 0.006658496579 ] }, { "learn": [ 0.9989183815, 0.003805868165 ], "iteration": 48800, "passed_time": 1488.808859, "remaining_time": 36.57879596, "test": [ 0.9978301061, 0.006658115841 ] }, { "learn": [ 0.9989187735, 0.003802871641 ], "iteration": 48900, "passed_time": 1491.423346, "remaining_time": 33.51821551, "test": [ 0.9978230496, 0.006656825899 ] }, { "learn": [ 0.9989191656, 0.003800733071 ], "iteration": 49000, "passed_time": 1494.132869, "remaining_time": 30.46139336, "test": [ 0.9978230496, 0.006655842614 ] }, { "learn": [ 0.9989195576, 0.003797334943 ], "iteration": 49100, "passed_time": 1498.203188, "remaining_time": 27.43090092, "test": [ 0.9978265778, 0.006655115595 ] }, { "learn": [ 0.9989211257, 0.003794982364 ], "iteration": 49200, "passed_time": 1500.793259, "remaining_time": 24.37214312, "test": [ 0.9978230496, 0.006653232581 ] }, { "learn": [ 0.9989219098, 0.003791981245 ], "iteration": 49300, "passed_time": 1503.41015, "remaining_time": 21.31566692, "test": [ 0.9978265778, 0.006651706185 ] }, { "learn": [ 0.9989226939, 0.003789346509 ], "iteration": 49400, "passed_time": 1505.989094, "remaining_time": 18.26051026, "test": [ 0.9978301061, 0.006650407198 ] }, { "learn": [ 0.998924654, 0.003786671958 ], "iteration": 49500, "passed_time": 1510.374463, "remaining_time": 15.22548751, "test": [ 0.9978336344, 0.006649796468 ] }, { "learn": [ 0.998924654, 0.003783342742 ], "iteration": 49600, "passed_time": 1512.982167, "remaining_time": 12.17072004, "test": [ 0.9978371627, 0.006648522461 ] }, { "learn": [ 0.9989254381, 0.003780310996 ], "iteration": 49700, "passed_time": 1515.603691, "remaining_time": 9.117834723, "test": [ 0.9978371627, 0.00664809607 ] }, { "learn": [ 0.9989277903, 0.00377780145 ], "iteration": 49800, "passed_time": 1518.203242, "remaining_time": 6.066593947, "test": [ 0.9978371627, 0.006646685532 ] }, { "learn": [ 0.9989289664, 0.003775486772 ], "iteration": 49900, "passed_time": 1521.928634, "remaining_time": 3.019397101, "test": [ 0.9978371627, 0.006645362857 ] }, { "learn": [ 0.9989289664, 0.003772818345 ], "iteration": 49999, "passed_time": 1525.172377, "remaining_time": 0, "test": [ 0.9978371627, 0.006644930866 ] } ], "meta": { "test_sets": [ "test" ], "test_metrics": [ { "best_value": "Max", "name": "Accuracy" }, { "best_value": "Min", "name": "MultiClass" } ], "learn_metrics": [ { "best_value": "Max", "name": "Accuracy" }, { "best_value": "Min", "name": "MultiClass" } ], "launch_mode": "Train", "parameters": "", "iteration_count": 50000, "learn_sets": [ "learn" ], "name": "experiment" } } } } }, "layout": "IPY_MODEL_0edddcd5e2b24238a4aff7b33a809a60" } } } } }, "nbformat": 4, "nbformat_minor": 0 }