File size: 4,848 Bytes
bc38547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os
import time
import argparse
import numpy as np
import random
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import sys
import json
from collections import defaultdict
import math

from model import DistMult

from tqdm import tqdm
from utils import collate_list, detach_and_clone, move_to
from PIL import Image
from torchvision import transforms

_DEFAULT_IMAGE_TENSOR_NORMALIZATION_MEAN = [0.485, 0.456, 0.406]
_DEFAULT_IMAGE_TENSOR_NORMALIZATION_STD = [0.229, 0.224, 0.225]

def evaluate(model, id2entity, target_list, args):
    model.eval()
    torch.set_grad_enabled(False)

    overall_id_to_name = json.load(open('data/iwildcam_v2.0/overall_id_to_name.json'))

    img = Image.open(args.img_path).convert('RGB')
            
    transform_steps = transforms.Compose([transforms.Resize((448, 448)), transforms.ToTensor(), transforms.Normalize(_DEFAULT_IMAGE_TENSOR_NORMALIZATION_MEAN, _DEFAULT_IMAGE_TENSOR_NORMALIZATION_STD)])
    h = transform_steps(img)
    r = torch.tensor([3])

    h = move_to(h, args.device).unsqueeze(0)
    r = move_to(r, args.device).unsqueeze(0)

    outputs = model.forward_ce(h, r, triple_type=('image', 'id'))

    y_pred = detach_and_clone(outputs.cpu())
    y_pred = y_pred.argmax(-1)

    pred_label = target_list[y_pred].item()
    species_label = overall_id_to_name[str(id2entity[pred_label])]
    print('species label = {}'.format(species_label))
    
    return

def _get_id(dict, key):
    id = dict.get(key, None)
    if id is None:
        id = len(dict)
        dict[key] = id
    return id

def generate_target_list(data, entity2id):
    sub = data.loc[(data["datatype_h"] == "image") & (data["datatype_t"] == "id"), ['t']]
    sub = list(sub['t'])
    categories = []
    for item in tqdm(sub):
        if entity2id[str(int(float(item)))] not in categories:
            categories.append(entity2id[str(int(float(item)))])
    # print('categories = {}'.format(categories))
    # print("No. of target categories = {}".format(len(categories)))
    return torch.tensor(categories, dtype=torch.long).unsqueeze(-1)



if __name__=='__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--data-dir', type=str, default='data/iwildcam_v2.0/')
    parser.add_argument('--img-path', type=str, required=True, help='path to species image to be classified')
    parser.add_argument('--seed', type=int, default=813765)
    parser.add_argument('--ckpt-path', type=str, default=None, help='path to ckpt for restarting expt')
    parser.add_argument('--debug', action='store_true')
    parser.add_argument('--no-cuda', action='store_true')
    parser.add_argument('--batch_size', type=int, default=16)

    parser.add_argument('--embedding-dim', type=int, default=512)
    parser.add_argument('--location_input_dim', type=int, default=2)
    parser.add_argument('--time_input_dim', type=int, default=1)
    parser.add_argument('--mlp_location_numlayer', type=int, default=3)
    parser.add_argument('--mlp_time_numlayer', type=int, default=3)

    parser.add_argument('--img-embed-model', choices=['resnet18', 'resnet50'], default='resnet50')
    parser.add_argument('--use-data-subset', action='store_true')
    parser.add_argument('--subset-size', type=int, default=10)

    args = parser.parse_args()

    print('args = {}'.format(args))
    args.device = torch.device('cuda') if not args.no_cuda and torch.cuda.is_available() else torch.device('cpu')

    # Set random seed
    torch.manual_seed(args.seed)
    np.random.seed(args.seed)
    random.seed(args.seed)

    datacsv = pd.read_csv(os.path.join(args.data_dir, 'dataset_subtree.csv'), low_memory=False)

    entity_id_file = os.path.join(args.data_dir, 'entity2id_subtree.json')

    if not os.path.exists(entity_id_file):
        entity2id = {} # each of triple types have their own entity2id
        
        for i in tqdm(range(datacsv.shape[0])):
            if datacsv.iloc[i,1] == "id":
                _get_id(entity2id, str(int(float(datacsv.iloc[i,0]))))

            if datacsv.iloc[i,-2] == "id":
                _get_id(entity2id, str(int(float(datacsv.iloc[i,-3]))))
        json.dump(entity2id, open(entity_id_file, 'w'))
    else:
        entity2id = json.load(open(entity_id_file, 'r'))
    
    id2entity = {v:k for k,v in entity2id.items()}

    num_ent_id = len(entity2id)

    # print('len(entity2id) = {}'.format(len(entity2id)))
    
    target_list = generate_target_list(datacsv, entity2id)

    model = DistMult(args, num_ent_id, target_list, args.device)

    model.to(args.device)

    # restore from ckpt
    if args.ckpt_path:
        ckpt = torch.load(args.ckpt_path, map_location=args.device)
        model.load_state_dict(ckpt['model'], strict=False)
        print('ckpt loaded...')

    evaluate(model, id2entity, target_list, args)