Spaces:
Sleeping
Sleeping
Commit
·
4b4b296
1
Parent(s):
01981f0
Create utils.py
Browse files
utils.py
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
import os
|
| 3 |
+
import csv
|
| 4 |
+
import argparse
|
| 5 |
+
import random
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
import pandas as pd
|
| 10 |
+
import re
|
| 11 |
+
|
| 12 |
+
from torch.utils.data import DataLoader
|
| 13 |
+
|
| 14 |
+
try:
|
| 15 |
+
from torch_geometric.data import Batch
|
| 16 |
+
except ImportError:
|
| 17 |
+
pass
|
| 18 |
+
|
| 19 |
+
def set_seed(seed):
|
| 20 |
+
"""Sets seed"""
|
| 21 |
+
if torch.cuda.is_available():
|
| 22 |
+
torch.cuda.manual_seed(seed)
|
| 23 |
+
torch.manual_seed(seed)
|
| 24 |
+
np.random.seed(seed)
|
| 25 |
+
random.seed(seed)
|
| 26 |
+
torch.backends.cudnn.benchmark = False
|
| 27 |
+
torch.backends.cudnn.deterministic = True
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def move_to(obj, device):
|
| 31 |
+
if isinstance(obj, dict):
|
| 32 |
+
return {k: move_to(v, device) for k, v in obj.items()}
|
| 33 |
+
elif isinstance(obj, list):
|
| 34 |
+
return [move_to(v, device) for v in obj]
|
| 35 |
+
elif isinstance(obj, float) or isinstance(obj, int):
|
| 36 |
+
return obj
|
| 37 |
+
else:
|
| 38 |
+
# Assume obj is a Tensor or other type
|
| 39 |
+
# (like Batch, for MolPCBA) that supports .to(device)
|
| 40 |
+
return obj.to(device)
|
| 41 |
+
|
| 42 |
+
def detach_and_clone(obj):
|
| 43 |
+
if torch.is_tensor(obj):
|
| 44 |
+
return obj.detach().clone()
|
| 45 |
+
elif isinstance(obj, dict):
|
| 46 |
+
return {k: detach_and_clone(v) for k, v in obj.items()}
|
| 47 |
+
elif isinstance(obj, list):
|
| 48 |
+
return [detach_and_clone(v) for v in obj]
|
| 49 |
+
elif isinstance(obj, float) or isinstance(obj, int):
|
| 50 |
+
return obj
|
| 51 |
+
else:
|
| 52 |
+
raise TypeError("Invalid type for detach_and_clone")
|
| 53 |
+
|
| 54 |
+
def collate_list(vec):
|
| 55 |
+
"""
|
| 56 |
+
If vec is a list of Tensors, it concatenates them all along the first dimension.
|
| 57 |
+
|
| 58 |
+
If vec is a list of lists, it joins these lists together, but does not attempt to
|
| 59 |
+
recursively collate. This allows each element of the list to be, e.g., its own dict.
|
| 60 |
+
|
| 61 |
+
If vec is a list of dicts (with the same keys in each dict), it returns a single dict
|
| 62 |
+
with the same keys. For each key, it recursively collates all entries in the list.
|
| 63 |
+
"""
|
| 64 |
+
if not isinstance(vec, list):
|
| 65 |
+
raise TypeError("collate_list must take in a list")
|
| 66 |
+
elem = vec[0]
|
| 67 |
+
if torch.is_tensor(elem):
|
| 68 |
+
return torch.cat(vec)
|
| 69 |
+
elif isinstance(elem, list):
|
| 70 |
+
return [obj for sublist in vec for obj in sublist]
|
| 71 |
+
elif isinstance(elem, dict):
|
| 72 |
+
return {k: collate_list([d[k] for d in vec]) for k in elem}
|
| 73 |
+
else:
|
| 74 |
+
raise TypeError("Elements of the list to collate must be tensors or dicts.")
|