Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- .gitattributes +1 -0
- app.py +73 -0
- final_model.keras +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
final_model.keras filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tensorflow as tf
|
3 |
+
from tensorflow.keras.preprocessing import image
|
4 |
+
import numpy as np
|
5 |
+
import os
|
6 |
+
|
7 |
+
# Load the model
|
8 |
+
MODEL_PATH = "/home/petpooja-504/Desktop/cnn/final_model.keras"
|
9 |
+
model = tf.keras.models.load_model(MODEL_PATH)
|
10 |
+
|
11 |
+
# Define the class names directly for the Food-101 dataset
|
12 |
+
CLASS_NAMES = [
|
13 |
+
'apple_pie', 'baby_back_ribs', 'baklava', 'beef_carpaccio', 'beef_tartare', 'beet_salad', 'beignets',
|
14 |
+
'bibimbap', 'bread_pudding', 'breakfast_burrito', 'bruschetta', 'caesar_salad', 'cannoli', 'caprese_salad',
|
15 |
+
'carrot_cake', 'ceviche', 'cheese_plate', 'cheesecake', 'chicken_curry', 'chicken_quesadilla',
|
16 |
+
'chicken_wings', 'chocolate_cake', 'chocolate_mousse', 'churros', 'clam_chowder', 'club_sandwich',
|
17 |
+
'crab_cakes', 'creme_brulee', 'croque_madame', 'cup_cakes', 'deviled_eggs', 'donuts', 'dumplings',
|
18 |
+
'edamame', 'eggs_benedict', 'escargots', 'falafel', 'filet_mignon', 'fish_and_chips', 'foie_gras',
|
19 |
+
'french_fries', 'french_onion_soup', 'french_toast', 'fried_calamari', 'fried_rice', 'frozen_yogurt',
|
20 |
+
'garlic_bread', 'gnocchi', 'greek_salad', 'grilled_cheese_sandwich', 'grilled_salmon', 'guacamole',
|
21 |
+
'gyoza', 'hamburger', 'hot_and_sour_soup', 'hot_dog', 'huevos_rancheros', 'hummus', 'ice_cream',
|
22 |
+
'lasagna', 'lobster_bisque', 'lobster_roll_sandwich', 'macaroni_and_cheese', 'macarons', 'miso_soup',
|
23 |
+
'mussels', 'nachos', 'omelette', 'onion_rings', 'oysters', 'pad_thai', 'paella', 'pancakes', 'panna_cotta',
|
24 |
+
'peking_duck', 'pho', 'pizza', 'pork_chop', 'poutine', 'prime_rib', 'pulled_pork_sandwich', 'ramen',
|
25 |
+
'ravioli', 'red_velvet_cake', 'risotto', 'samosa', 'sashimi', 'scallops', 'seaweed_salad', 'shrimp_and_grits',
|
26 |
+
'spaghetti_bolognese', 'spaghetti_carbonara', 'spring_rolls', 'steak', 'strawberry_shortcake', 'sushi',
|
27 |
+
'tacos', 'takoyaki', 'tiramisu', 'tuna_tartare', 'waffles'
|
28 |
+
]
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
# Define the function to predict the image
|
33 |
+
# Define the function to predict the image
|
34 |
+
def predict_image(img_path):
|
35 |
+
# Load and preprocess the image
|
36 |
+
img = image.load_img(img_path, target_size=(224, 224)) # Resize to match model's expected input size
|
37 |
+
img_array = image.img_to_array(img) # Convert image to array
|
38 |
+
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
|
39 |
+
img_array = img_array / 255.0 # Normalize the image as done during training
|
40 |
+
|
41 |
+
# Make prediction
|
42 |
+
predictions = model.predict(img_array)
|
43 |
+
|
44 |
+
# Get prediction probabilities
|
45 |
+
prediction_probs = predictions[0] # Prediction probabilities
|
46 |
+
predicted_class_index = np.argmax(prediction_probs)
|
47 |
+
predicted_class = CLASS_NAMES[predicted_class_index] # Fetch the class name
|
48 |
+
|
49 |
+
return predicted_class
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
# Streamlit UI components
|
54 |
+
st.title("Food-101 Classification Model")
|
55 |
+
st.write("Upload an image of food to predict its class.")
|
56 |
+
|
57 |
+
# Upload image
|
58 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
59 |
+
|
60 |
+
if uploaded_file is not None:
|
61 |
+
# Display the uploaded image
|
62 |
+
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
|
63 |
+
|
64 |
+
# Save the image temporarily
|
65 |
+
img_path = "uploaded_image.jpg"
|
66 |
+
with open(img_path, "wb") as f:
|
67 |
+
f.write(uploaded_file.getbuffer())
|
68 |
+
|
69 |
+
# Make prediction
|
70 |
+
predicted_class = predict_image(img_path)
|
71 |
+
|
72 |
+
# Display the predicted class
|
73 |
+
st.write(f"Predicted Class: {predicted_class}")
|
final_model.keras
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c918e0962bfa2d1399c493b089924bbbd44ab9b11147e4e03a3947d625d00d1d
|
3 |
+
size 296632716
|