import gradio as gr from transformers import pipeline """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ # Use a pipeline as a high-level helper pipe = pipeline("text-generation", model="vc3vc3/qwen3-0.6B-finetune") messages = [ {"role": "user", "content": "Who are you? 用中文回答,风格调皮一些。"}, ] pipe(messages) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # 拼接历史消息和当前消息为 prompt prompt = system_message + "\n" for val in history: if val[0]: prompt += f"用户: {val[0]}\n" if val[1]: prompt += f"助手: {val[1]}\n" prompt += f"用户: {message}\n助手:" # 使用 pipe 生成回复 response = "" for out in pipe( prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=True, return_full_text=False, truncation=True, stream=True, ): token = out["generated_text"] if isinstance(out, dict) and "generated_text" in out else str(out) response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()