Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
·
150bb15
1
Parent(s):
8a6bfdc
minor update and extend to support different APIs
Browse files- .gitignore +3 -0
- generation_results/CohereForAI/c4ai-command-r-plus.csv +0 -0
- generation_results/databricks/dbrx-instruct.csv +0 -0
- generation_results/google/gemma-1.1-2b-it.csv +0 -0
- generation_results/google/gemma-1.1-7b-it.csv +0 -0
- generation_results/microsoft/WizardLM-2-8x22B.csv +0 -0
- generation_results/mistralai/mixtral-8x22b.csv +0 -0
- generation_results/mistralai/mixtral-8x22b_v1.csv +0 -0
- generation_results/openai/GPT-4-Turbo.csv +0 -0
- src/backend/evaluate_model.py +43 -3
- src/backend/manage_requests.py +1 -1
- src/backend/model_operations.py +175 -51
- src/backend/run_eval_suite.py +23 -10
- src/backend/util.py +5 -4
- src/envs.py +2 -2
.gitignore
CHANGED
|
@@ -15,3 +15,6 @@ eval-queue-bk/
|
|
| 15 |
eval-results-bk/
|
| 16 |
|
| 17 |
src/assets/model_counts.html
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
eval-results-bk/
|
| 16 |
|
| 17 |
src/assets/model_counts.html
|
| 18 |
+
|
| 19 |
+
generated_results/
|
| 20 |
+
Hallucination Leaderboard Results
|
generation_results/CohereForAI/c4ai-command-r-plus.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
generation_results/databricks/dbrx-instruct.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
generation_results/google/gemma-1.1-2b-it.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
generation_results/google/gemma-1.1-7b-it.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
generation_results/microsoft/WizardLM-2-8x22B.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
generation_results/mistralai/mixtral-8x22b.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
generation_results/mistralai/mixtral-8x22b_v1.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
generation_results/openai/GPT-4-Turbo.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
src/backend/evaluate_model.py
CHANGED
|
@@ -1,5 +1,7 @@
|
|
| 1 |
import logging
|
| 2 |
import pandas as pd
|
|
|
|
|
|
|
| 3 |
|
| 4 |
import src.envs as envs
|
| 5 |
|
|
@@ -70,13 +72,16 @@ class Evaluator:
|
|
| 70 |
"""
|
| 71 |
try:
|
| 72 |
df = pd.read_csv(envs.DATASET_PATH)
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
avg_summary_len = self.summary_generator.avg_length
|
| 76 |
answer_rate = self.summary_generator.answer_rate
|
| 77 |
|
| 78 |
-
hallucination_scores = self.eval_model.evaluate_hallucination(
|
| 79 |
-
generated_summaries_df)
|
| 80 |
factual_consistency_rate = self.eval_model.compute_factual_consistency_rate()
|
| 81 |
hallucination_rate = self.eval_model.hallucination_rate
|
| 82 |
|
|
@@ -93,3 +98,38 @@ class Evaluator:
|
|
| 93 |
except Exception as e:
|
| 94 |
logging.error(f"Error during evaluation: {e}")
|
| 95 |
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import logging
|
| 2 |
import pandas as pd
|
| 3 |
+
import os
|
| 4 |
+
import csv
|
| 5 |
|
| 6 |
import src.envs as envs
|
| 7 |
|
|
|
|
| 72 |
"""
|
| 73 |
try:
|
| 74 |
df = pd.read_csv(envs.DATASET_PATH)
|
| 75 |
+
# print(envs.DATASET_PATH)
|
| 76 |
+
# print(df.shape)
|
| 77 |
+
# print(df.iloc[-1])
|
| 78 |
+
self.generated_summaries_df = self.summary_generator.generate_summaries(df, save_path=f"generation_results/{self.model}.csv")
|
| 79 |
|
| 80 |
avg_summary_len = self.summary_generator.avg_length
|
| 81 |
answer_rate = self.summary_generator.answer_rate
|
| 82 |
|
| 83 |
+
self.hallucination_scores, self.eval_results = self.eval_model.evaluate_hallucination(
|
| 84 |
+
self.generated_summaries_df)
|
| 85 |
factual_consistency_rate = self.eval_model.compute_factual_consistency_rate()
|
| 86 |
hallucination_rate = self.eval_model.hallucination_rate
|
| 87 |
|
|
|
|
| 98 |
except Exception as e:
|
| 99 |
logging.error(f"Error during evaluation: {e}")
|
| 100 |
raise
|
| 101 |
+
|
| 102 |
+
def write_results(self):
|
| 103 |
+
print('Updating result files')
|
| 104 |
+
leaderboard_path = os.getcwd() # the path of leaderboard folder
|
| 105 |
+
print(leaderboard_path)
|
| 106 |
+
working_path = os.path.join(leaderboard_path, 'Hallucination Leaderboard Results')
|
| 107 |
+
if not os.path.exists(working_path):
|
| 108 |
+
logging.error(f"Need to first download the results from google drive to the learderboard folder")
|
| 109 |
+
raise
|
| 110 |
+
|
| 111 |
+
source_summary_df = self.generated_summaries_df[["source", "summary"]]
|
| 112 |
+
|
| 113 |
+
# #update leaderboard_summaries.csv
|
| 114 |
+
# #first remove previous results for the current model
|
| 115 |
+
# existing_df = pd.read_csv(os.path.join(working_path, 'leaderboard_summaries.csv'), encoding='utf-8', sep="\t")
|
| 116 |
+
# mask = existing_df['model'] == self.model
|
| 117 |
+
# existing_df = existing_df[~mask]
|
| 118 |
+
# # get new result
|
| 119 |
+
leaderboard_summaries_df = source_summary_df
|
| 120 |
+
leaderboard_summaries_df.insert(2, "model", [self.model]*leaderboard_summaries_df.shape[0])
|
| 121 |
+
leaderboard_summaries_df.to_csv(os.path.join(working_path, 'leaderboard_summaries.csv'), mode='a', index=False, header=False)
|
| 122 |
+
print('leaderboard_summaries.csv has been updated')
|
| 123 |
+
|
| 124 |
+
# update leaderboard_summaries_with_scores.csv
|
| 125 |
+
# BUG: get error when opening the file
|
| 126 |
+
# existing_df = pd.read_csv(os.path.join(working_path, 'leaderboard_summaries_with_scores.csv'),
|
| 127 |
+
# encoding='utf-8', sep=",", on_bad_lines='warn', quotechar='"', quoting=2)
|
| 128 |
+
# print(existing_df.shape)
|
| 129 |
+
# mask = existing_df['model'] == self.model
|
| 130 |
+
# existing_df = existing_df[~mask]
|
| 131 |
+
# get new result
|
| 132 |
+
leaderboard_summaries_with_scores_df = pd.DataFrame.from_dict(self.eval_results)
|
| 133 |
+
leaderboard_summaries_with_scores_df.insert(3, "model", [self.model]*leaderboard_summaries_with_scores_df.shape[0])
|
| 134 |
+
leaderboard_summaries_with_scores_df.to_csv(os.path.join(working_path, 'leaderboard_summaries_with_scores.csv'), mode='a', index=False, header=False)
|
| 135 |
+
print('leaderboard_summaries_with_scores.csv has been updated')
|
src/backend/manage_requests.py
CHANGED
|
@@ -12,7 +12,7 @@ class EvalRequest:
|
|
| 12 |
model: str
|
| 13 |
# private: bool
|
| 14 |
status: str
|
| 15 |
-
json_filepath: str
|
| 16 |
private: bool = False
|
| 17 |
weight_type: str = "Original"
|
| 18 |
model_type: str = "" # pretrained, finetuned, with RL
|
|
|
|
| 12 |
model: str
|
| 13 |
# private: bool
|
| 14 |
status: str
|
| 15 |
+
json_filepath: str = None
|
| 16 |
private: bool = False
|
| 17 |
weight_type: str = "Original"
|
| 18 |
model_type: str = "" # pretrained, finetuned, with RL
|
src/backend/model_operations.py
CHANGED
|
@@ -2,17 +2,30 @@ import os
|
|
| 2 |
import time
|
| 3 |
from datetime import datetime
|
| 4 |
import logging
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
import numpy as np
|
| 7 |
import pandas as pd
|
| 8 |
import spacy
|
| 9 |
from sentence_transformers import CrossEncoder
|
| 10 |
-
|
|
|
|
| 11 |
from tqdm import tqdm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
import src.backend.util as util
|
| 14 |
import src.envs as envs
|
| 15 |
|
|
|
|
|
|
|
| 16 |
# Set up basic configuration for logging
|
| 17 |
logging.basicConfig(level=logging.INFO,
|
| 18 |
format='%(asctime)s - %(levelname)s - %(message)s')
|
|
@@ -36,18 +49,6 @@ def load_evaluation_model(model_path):
|
|
| 36 |
return model
|
| 37 |
|
| 38 |
|
| 39 |
-
def generate_summary(model: str, system_prompt: str, user_prompt: str, api_base: str):
|
| 40 |
-
response = completion(
|
| 41 |
-
model=model,
|
| 42 |
-
messages=[{"role": "system", "content": system_prompt},
|
| 43 |
-
{"role": "user", "content": user_prompt}],
|
| 44 |
-
temperature=0.0,
|
| 45 |
-
max_tokens=1024,
|
| 46 |
-
api_base=api_base,
|
| 47 |
-
)
|
| 48 |
-
return response['choices'][0]['message']['content']
|
| 49 |
-
|
| 50 |
-
|
| 51 |
class ModelLoadingException(Exception):
|
| 52 |
"""Exception raised for errors in loading a model.
|
| 53 |
|
|
@@ -82,6 +83,7 @@ class SummaryGenerator:
|
|
| 82 |
model_id (str): Identifier for the model.
|
| 83 |
revision (str): Revision of the model.
|
| 84 |
"""
|
|
|
|
| 85 |
self.model = f"huggingface/{model_id}"
|
| 86 |
self.api_base = f"https://api-inference.huggingface.co/models/{model_id}"
|
| 87 |
self.summaries_df = pd.DataFrame()
|
|
@@ -89,8 +91,9 @@ class SummaryGenerator:
|
|
| 89 |
self.avg_length = None
|
| 90 |
self.answer_rate = None
|
| 91 |
self.exceptions = None
|
|
|
|
| 92 |
|
| 93 |
-
def generate_summaries(self, df):
|
| 94 |
"""Generate summaries for a given DataFrame of source docs.
|
| 95 |
|
| 96 |
Args:
|
|
@@ -99,47 +102,155 @@ class SummaryGenerator:
|
|
| 99 |
Returns:
|
| 100 |
summaries_df (DataFrame): Generated summaries by the model.
|
| 101 |
"""
|
| 102 |
-
source, summary, dataset = [], [], []
|
| 103 |
exceptions = []
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
print(f"Rate limit hit at {current_time}. Waiting for 1 hour before retrying...")
|
| 122 |
-
time.sleep(wait_time)
|
| 123 |
-
else:
|
| 124 |
-
print(f"Error at index {index}: {e}")
|
| 125 |
-
_summary = ""
|
| 126 |
-
exceptions.append(index)
|
| 127 |
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
-
summary.append(_summary)
|
| 130 |
-
source.append(_source)
|
| 131 |
-
dataset.append(_dataset)
|
| 132 |
-
|
| 133 |
-
# Sleep to prevent hitting rate limits too frequently
|
| 134 |
-
time.sleep(1)
|
| 135 |
-
|
| 136 |
-
self.summaries_df = pd.DataFrame(list(zip(source, summary, dataset)),
|
| 137 |
-
columns=["source", "summary", "dataset"])
|
| 138 |
self.exceptions = exceptions
|
| 139 |
self._compute_avg_length()
|
| 140 |
self._compute_answer_rate()
|
| 141 |
|
| 142 |
return self.summaries_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
def _compute_avg_length(self):
|
| 145 |
"""
|
|
@@ -203,22 +314,35 @@ class EvaluationModel:
|
|
| 203 |
list: List of hallucination scores. Also updates the 'scores' attribute of the instance.
|
| 204 |
"""
|
| 205 |
hem_scores = []
|
|
|
|
|
|
|
| 206 |
source_summary_pairs = util.create_pairs(summaries_df)
|
| 207 |
|
| 208 |
for doc, summary in tqdm(source_summary_pairs, desc="Evaluating hallucinations"):
|
| 209 |
if util.is_summary_valid(summary):
|
| 210 |
try:
|
| 211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
if not isinstance(score, float):
|
| 213 |
-
|
| 214 |
-
|
|
|
|
|
|
|
|
|
|
| 215 |
hem_scores.append(score)
|
|
|
|
|
|
|
| 216 |
except Exception as e:
|
| 217 |
logging.error(f"Error while running HEM: {e}")
|
| 218 |
raise
|
| 219 |
|
| 220 |
self.scores = hem_scores
|
| 221 |
-
|
|
|
|
| 222 |
|
| 223 |
|
| 224 |
def compute_factual_consistency_rate(self, threshold=0.5):
|
|
|
|
| 2 |
import time
|
| 3 |
from datetime import datetime
|
| 4 |
import logging
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
import requests
|
| 7 |
+
import json
|
| 8 |
|
| 9 |
import numpy as np
|
| 10 |
import pandas as pd
|
| 11 |
import spacy
|
| 12 |
from sentence_transformers import CrossEncoder
|
| 13 |
+
import litellm
|
| 14 |
+
# from litellm import completion
|
| 15 |
from tqdm import tqdm
|
| 16 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, AutoConfig
|
| 17 |
+
# from accelerate import PartialState
|
| 18 |
+
# from accelerate.inference import prepare_pippy
|
| 19 |
+
import torch
|
| 20 |
+
import cohere
|
| 21 |
+
from openai import OpenAI
|
| 22 |
+
|
| 23 |
|
| 24 |
import src.backend.util as util
|
| 25 |
import src.envs as envs
|
| 26 |
|
| 27 |
+
litellm.set_verbose=False
|
| 28 |
+
|
| 29 |
# Set up basic configuration for logging
|
| 30 |
logging.basicConfig(level=logging.INFO,
|
| 31 |
format='%(asctime)s - %(levelname)s - %(message)s')
|
|
|
|
| 49 |
return model
|
| 50 |
|
| 51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
class ModelLoadingException(Exception):
|
| 53 |
"""Exception raised for errors in loading a model.
|
| 54 |
|
|
|
|
| 83 |
model_id (str): Identifier for the model.
|
| 84 |
revision (str): Revision of the model.
|
| 85 |
"""
|
| 86 |
+
self.model_id = model_id
|
| 87 |
self.model = f"huggingface/{model_id}"
|
| 88 |
self.api_base = f"https://api-inference.huggingface.co/models/{model_id}"
|
| 89 |
self.summaries_df = pd.DataFrame()
|
|
|
|
| 91 |
self.avg_length = None
|
| 92 |
self.answer_rate = None
|
| 93 |
self.exceptions = None
|
| 94 |
+
self.local_model = None
|
| 95 |
|
| 96 |
+
def generate_summaries(self, df, save_path=None):
|
| 97 |
"""Generate summaries for a given DataFrame of source docs.
|
| 98 |
|
| 99 |
Args:
|
|
|
|
| 102 |
Returns:
|
| 103 |
summaries_df (DataFrame): Generated summaries by the model.
|
| 104 |
"""
|
|
|
|
| 105 |
exceptions = []
|
| 106 |
+
if (save_path is not None) and os.path.exists(save_path):
|
| 107 |
+
self.summaries_df = pd.read_csv(save_path)
|
| 108 |
+
print(f'Loaded generated summaries from {save_path}')
|
| 109 |
+
else:
|
| 110 |
+
source, summary, dataset = [], [], []
|
| 111 |
+
print(f"Total: {df.shape[0]}")
|
| 112 |
+
for index, row in tqdm(df.iterrows(), total=df.shape[0]):
|
| 113 |
+
_source = row['text']
|
| 114 |
+
_dataset = row['dataset']
|
| 115 |
+
|
| 116 |
+
system_prompt = envs.SYSTEM_PROMPT
|
| 117 |
+
user_prompt = f"{envs.USER_PROMPT}\nPassage:\n{_source}"
|
| 118 |
+
|
| 119 |
+
while True:
|
| 120 |
+
try:
|
| 121 |
+
_summary = self.generate_summary(system_prompt, user_prompt)
|
| 122 |
+
# print(f"Finish index {index}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
break
|
| 124 |
+
except Exception as e:
|
| 125 |
+
if 'Rate limit reached' in str(e):
|
| 126 |
+
wait_time = 3660
|
| 127 |
+
current_time = datetime.now().strftime('%H:%M:%S')
|
| 128 |
+
print(f"Rate limit hit at {current_time}. Waiting for 1 hour before retrying...")
|
| 129 |
+
time.sleep(wait_time)
|
| 130 |
+
elif 'is currently loading' in str(e):
|
| 131 |
+
wait_time = 200
|
| 132 |
+
print(f"Model is loading, wait for {wait_time}")
|
| 133 |
+
time.sleep(wait_time)
|
| 134 |
+
else:
|
| 135 |
+
print(f"Error at index {index}: {e}")
|
| 136 |
+
_summary = ""
|
| 137 |
+
exceptions.append(index)
|
| 138 |
+
break
|
| 139 |
+
|
| 140 |
+
summary.append(_summary)
|
| 141 |
+
source.append(_source)
|
| 142 |
+
dataset.append(_dataset)
|
| 143 |
+
|
| 144 |
+
# Sleep to prevent hitting rate limits too frequently
|
| 145 |
+
time.sleep(1)
|
| 146 |
+
|
| 147 |
+
self.summaries_df = pd.DataFrame(list(zip(source, summary, dataset)),
|
| 148 |
+
columns=["source", "summary", "dataset"])
|
| 149 |
+
|
| 150 |
+
if save_path is not None:
|
| 151 |
+
print(f'Save summaries to {save_path}')
|
| 152 |
+
fpath = Path(save_path)
|
| 153 |
+
fpath.parent.mkdir(parents=True, exist_ok=True)
|
| 154 |
+
self.summaries_df.to_csv(fpath)
|
| 155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
self.exceptions = exceptions
|
| 157 |
self._compute_avg_length()
|
| 158 |
self._compute_answer_rate()
|
| 159 |
|
| 160 |
return self.summaries_df
|
| 161 |
+
|
| 162 |
+
def generate_summary(self, system_prompt: str, user_prompt: str):
|
| 163 |
+
# Using Together AI API
|
| 164 |
+
if 'mixtral' in self.model_id.lower() or 'dbrx' in self.model_id.lower() or 'wizardlm' in self.model_id.lower(): # For mixtral and dbrx models, use Together AI API
|
| 165 |
+
suffix = "completions" if ('mixtral' in self.model_id.lower() or 'base' in self.model_id.lower()) else "chat/completions"
|
| 166 |
+
url = f"https://api.together.xyz/v1/{suffix}"
|
| 167 |
+
|
| 168 |
+
payload = {
|
| 169 |
+
"model": self.model_id,
|
| 170 |
+
# "max_tokens": 4096,
|
| 171 |
+
'max_new_tokens': 250,
|
| 172 |
+
"temperature": 0.0,
|
| 173 |
+
'repetition_penalty': 1.1 if 'mixtral' in self.model_id.lower() else 1
|
| 174 |
+
}
|
| 175 |
+
if 'mixtral' in self.model_id.lower():
|
| 176 |
+
# payload['prompt'] = user_prompt
|
| 177 |
+
# payload['prompt'] = "Write a summary of the following passage:\nPassage:\n" + user_prompt.split('Passage:\n')[-1] + '\n\nSummary:'
|
| 178 |
+
payload['prompt'] = 'You must stick to the passage provided. Provide a concise summary of the following passage, covering the core pieces of information described:\nPassage:\n' + user_prompt.split('Passage:\n')[-1] + '\n\nSummary:'
|
| 179 |
+
print(payload)
|
| 180 |
+
else:
|
| 181 |
+
payload['messages'] = [{"role": "system", "content": system_prompt},
|
| 182 |
+
{"role": "user", "content": user_prompt}]
|
| 183 |
+
headers = {
|
| 184 |
+
"accept": "application/json",
|
| 185 |
+
"content-type": "application/json",
|
| 186 |
+
"Authorization": f"Bearer {os.environ['TOGETHER_API_KEY']}"
|
| 187 |
+
}
|
| 188 |
+
|
| 189 |
+
response = requests.post(url, json=payload, headers=headers)
|
| 190 |
+
try:
|
| 191 |
+
result = json.loads(response.text)
|
| 192 |
+
# print(result)
|
| 193 |
+
result = result["choices"][0]
|
| 194 |
+
if 'message' in result:
|
| 195 |
+
result = result["message"]["content"].strip()
|
| 196 |
+
else:
|
| 197 |
+
result = result["text"]
|
| 198 |
+
result_candidates = [result_cancdidate for result_cancdidate in result.split('\n\n') if len(result_cancdidate) > 0]
|
| 199 |
+
result = result_candidates[0]
|
| 200 |
+
print(result)
|
| 201 |
+
except:
|
| 202 |
+
print(response)
|
| 203 |
+
result = ''
|
| 204 |
+
return result
|
| 205 |
+
|
| 206 |
+
# Using OpenAI API
|
| 207 |
+
elif 'gpt' in self.model_id.lower():
|
| 208 |
+
response = litellm.completion(
|
| 209 |
+
model=self.model_id.replace('openai/',''),
|
| 210 |
+
messages=[{"role": "system", "content": system_prompt},
|
| 211 |
+
{"role": "user", "content": user_prompt}],
|
| 212 |
+
temperature=0.0,
|
| 213 |
+
max_tokens=250,
|
| 214 |
+
)
|
| 215 |
+
result = response['choices'][0]['message']['content']
|
| 216 |
+
print(result)
|
| 217 |
+
return result
|
| 218 |
+
|
| 219 |
+
# Using HF API or download checkpoints
|
| 220 |
+
if self.local_model is None:
|
| 221 |
+
try: # try use HuggingFace API
|
| 222 |
+
|
| 223 |
+
response = litellm.completion(
|
| 224 |
+
model='command-r-plus' if 'command' in self.model else self.model,
|
| 225 |
+
messages=[{"role": "system", "content": system_prompt},
|
| 226 |
+
{"role": "user", "content": user_prompt}],
|
| 227 |
+
temperature=0.0,
|
| 228 |
+
max_tokens=1024,
|
| 229 |
+
api_base=self.api_base,
|
| 230 |
+
)
|
| 231 |
+
result = response['choices'][0]['message']['content']
|
| 232 |
+
except: # fail to call api. run it locally.
|
| 233 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, trust_remote_code=True)
|
| 234 |
+
print("Tokenizer loaded")
|
| 235 |
+
self.local_model = AutoModelForCausalLM.from_pretrained(self.model_id, trust_remote_code=True, device_map="auto", torch_dtype="auto")
|
| 236 |
+
print("Local model loaded")
|
| 237 |
+
|
| 238 |
+
# Using local model
|
| 239 |
+
if self.local_model: # cannot call API. using local model
|
| 240 |
+
messages=[
|
| 241 |
+
{"role": "system", "content": system_prompt}, # gemma-1.1 does not accept system role
|
| 242 |
+
{"role": "user", "content": user_prompt}
|
| 243 |
+
],
|
| 244 |
+
prompt = self.tokenizer.apply_chat_template(messages,add_generation_prompt=True, tokenize=False)
|
| 245 |
+
print(prompt)
|
| 246 |
+
input_ids = self.tokenizer(prompt, return_tensors="pt").to('cuda')
|
| 247 |
+
with torch.no_grad():
|
| 248 |
+
outputs = self.local_model.generate(**input_ids, max_new_tokens=250, do_sample=True, temperature=0.01, pad_token_id=self.tokenizer.eos_token_id)
|
| 249 |
+
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 250 |
+
result = result.replace(prompt[0], '')
|
| 251 |
+
print(result)
|
| 252 |
+
|
| 253 |
+
return result
|
| 254 |
|
| 255 |
def _compute_avg_length(self):
|
| 256 |
"""
|
|
|
|
| 314 |
list: List of hallucination scores. Also updates the 'scores' attribute of the instance.
|
| 315 |
"""
|
| 316 |
hem_scores = []
|
| 317 |
+
sources = []
|
| 318 |
+
summaries = []
|
| 319 |
source_summary_pairs = util.create_pairs(summaries_df)
|
| 320 |
|
| 321 |
for doc, summary in tqdm(source_summary_pairs, desc="Evaluating hallucinations"):
|
| 322 |
if util.is_summary_valid(summary):
|
| 323 |
try:
|
| 324 |
+
# summary_pieces = summary.split('\n')
|
| 325 |
+
# summary = summary_pieces[0] if len(summary_pieces[0].strip()) > 0 else summary_pieces[1]
|
| 326 |
+
summary = summary.replace('<bos>','').replace('<eos>','')
|
| 327 |
+
# print([doc, summary])
|
| 328 |
+
# print(self.model.predict([doc, summary]))
|
| 329 |
+
score = self.model.predict([doc, summary])# [0]
|
| 330 |
if not isinstance(score, float):
|
| 331 |
+
try:
|
| 332 |
+
score = score.item()
|
| 333 |
+
except:
|
| 334 |
+
logging.warning(f"Score type mismatch: Expected float, got {type(score)}.")
|
| 335 |
+
continue
|
| 336 |
hem_scores.append(score)
|
| 337 |
+
sources.append(doc)
|
| 338 |
+
summaries.append(summary)
|
| 339 |
except Exception as e:
|
| 340 |
logging.error(f"Error while running HEM: {e}")
|
| 341 |
raise
|
| 342 |
|
| 343 |
self.scores = hem_scores
|
| 344 |
+
eval_results = {'source': sources, 'summary': summaries, 'HEM scores': hem_scores}
|
| 345 |
+
return hem_scores, eval_results
|
| 346 |
|
| 347 |
|
| 348 |
def compute_factual_consistency_rate(self, threshold=0.5):
|
src/backend/run_eval_suite.py
CHANGED
|
@@ -14,7 +14,8 @@ logging.getLogger("openai").setLevel(logging.WARNING)
|
|
| 14 |
|
| 15 |
|
| 16 |
def run_evaluation(eval_request: EvalRequest, batch_size, device,
|
| 17 |
-
local_dir: str, results_repo: str, no_cache=True, limit=None
|
|
|
|
| 18 |
"""
|
| 19 |
Run the evaluation for a given model and upload the results.
|
| 20 |
|
|
@@ -34,11 +35,20 @@ def run_evaluation(eval_request: EvalRequest, batch_size, device,
|
|
| 34 |
if limit:
|
| 35 |
logging.warning("WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.")
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
try:
|
| 38 |
evaluator = Evaluator(eval_request.model, eval_request.revision, eval_request.precision,
|
| 39 |
batch_size, device, no_cache, limit, write_out=True,
|
| 40 |
output_base_path='logs')
|
| 41 |
results = evaluator.evaluate()
|
|
|
|
| 42 |
except Exception as e:
|
| 43 |
logging.error(f"Error during evaluation: {e}")
|
| 44 |
raise
|
|
@@ -46,17 +56,20 @@ def run_evaluation(eval_request: EvalRequest, batch_size, device,
|
|
| 46 |
dumped = json.dumps(results, indent=2)
|
| 47 |
logging.info(dumped)
|
| 48 |
|
| 49 |
-
output_path = os.path.join(
|
| 50 |
-
f"results_{datetime.now()}.json")
|
| 51 |
-
os.makedirs(
|
| 52 |
with open(output_path, "w") as f:
|
| 53 |
f.write(dumped)
|
|
|
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
| 61 |
|
| 62 |
return results
|
|
|
|
| 14 |
|
| 15 |
|
| 16 |
def run_evaluation(eval_request: EvalRequest, batch_size, device,
|
| 17 |
+
local_dir: str, results_repo: str, no_cache=True, limit=None,
|
| 18 |
+
need_check=True, write_results=True):
|
| 19 |
"""
|
| 20 |
Run the evaluation for a given model and upload the results.
|
| 21 |
|
|
|
|
| 35 |
if limit:
|
| 36 |
logging.warning("WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.")
|
| 37 |
|
| 38 |
+
output_folder = os.path.join(local_dir, *eval_request.model.split("/"))
|
| 39 |
+
# if os.path.exists(output_folder):
|
| 40 |
+
# f_name = os.listdir(output_folder)[-1]
|
| 41 |
+
# print(f"Loading results from {os.path.join(output_folder, f_name)}")
|
| 42 |
+
# results = json.loads(os.path.join(output_folder, f_name))
|
| 43 |
+
# dumped = json.dumps(results, indent=2)
|
| 44 |
+
# logging.info(dumped)
|
| 45 |
+
# else:
|
| 46 |
try:
|
| 47 |
evaluator = Evaluator(eval_request.model, eval_request.revision, eval_request.precision,
|
| 48 |
batch_size, device, no_cache, limit, write_out=True,
|
| 49 |
output_base_path='logs')
|
| 50 |
results = evaluator.evaluate()
|
| 51 |
+
evaluator.write_results()
|
| 52 |
except Exception as e:
|
| 53 |
logging.error(f"Error during evaluation: {e}")
|
| 54 |
raise
|
|
|
|
| 56 |
dumped = json.dumps(results, indent=2)
|
| 57 |
logging.info(dumped)
|
| 58 |
|
| 59 |
+
output_path = os.path.join(output_folder,
|
| 60 |
+
f"results_{datetime.now()}.json") #
|
| 61 |
+
os.makedirs(output_folder, exist_ok=True)
|
| 62 |
with open(output_path, "w") as f:
|
| 63 |
f.write(dumped)
|
| 64 |
+
print(f"Results have been saved to{output_path}")
|
| 65 |
|
| 66 |
+
if not need_check:
|
| 67 |
+
print("Path in the repo:", f"{eval_request.model}/results_{datetime.now()}.json")
|
| 68 |
+
envs.API.upload_file(
|
| 69 |
+
path_or_fileobj=output_path,
|
| 70 |
+
path_in_repo=f"{eval_request.model}/results_{datetime.now()}.json",
|
| 71 |
+
repo_id=results_repo,
|
| 72 |
+
repo_type="dataset",
|
| 73 |
+
)
|
| 74 |
|
| 75 |
return results
|
src/backend/util.py
CHANGED
|
@@ -14,6 +14,7 @@ def is_summary_valid(summary: str) -> bool:
|
|
| 14 |
words = summary.split()
|
| 15 |
if len(words) >= 5:
|
| 16 |
return True
|
|
|
|
| 17 |
return False
|
| 18 |
|
| 19 |
|
|
@@ -60,16 +61,16 @@ def format_results(model_name: str, revision: str, precision: str,
|
|
| 60 |
},
|
| 61 |
"results": {
|
| 62 |
"hallucination_rate": {
|
| 63 |
-
"hallucination_rate": hallucination_rate
|
| 64 |
},
|
| 65 |
"factual_consistency_rate": {
|
| 66 |
-
"factual_consistency_rate": factual_consistency_rate
|
| 67 |
},
|
| 68 |
"answer_rate": {
|
| 69 |
-
"answer_rate": answer_rate
|
| 70 |
},
|
| 71 |
"average_summary_length": {
|
| 72 |
-
"average_summary_length": avg_summary_len
|
| 73 |
},
|
| 74 |
}
|
| 75 |
}
|
|
|
|
| 14 |
words = summary.split()
|
| 15 |
if len(words) >= 5:
|
| 16 |
return True
|
| 17 |
+
# print(summary)
|
| 18 |
return False
|
| 19 |
|
| 20 |
|
|
|
|
| 61 |
},
|
| 62 |
"results": {
|
| 63 |
"hallucination_rate": {
|
| 64 |
+
"hallucination_rate": round(hallucination_rate,1)
|
| 65 |
},
|
| 66 |
"factual_consistency_rate": {
|
| 67 |
+
"factual_consistency_rate": round(factual_consistency_rate,1)
|
| 68 |
},
|
| 69 |
"answer_rate": {
|
| 70 |
+
"answer_rate": round(answer_rate*100,1)
|
| 71 |
},
|
| 72 |
"average_summary_length": {
|
| 73 |
+
"average_summary_length": round(avg_summary_len,1)
|
| 74 |
},
|
| 75 |
}
|
| 76 |
}
|
src/envs.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
import os
|
| 2 |
-
|
| 3 |
from huggingface_hub import HfApi
|
| 4 |
|
| 5 |
|
|
@@ -19,7 +19,7 @@ EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
|
|
| 19 |
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
|
| 20 |
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
| 21 |
|
| 22 |
-
DEVICE = "cpu"
|
| 23 |
API = HfApi(token=TOKEN)
|
| 24 |
|
| 25 |
DATASET_PATH = "src/datasets/leaderboard_dataset.csv"
|
|
|
|
| 1 |
import os
|
| 2 |
+
import torch
|
| 3 |
from huggingface_hub import HfApi
|
| 4 |
|
| 5 |
|
|
|
|
| 19 |
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
|
| 20 |
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
| 21 |
|
| 22 |
+
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') #"cpu"
|
| 23 |
API = HfApi(token=TOKEN)
|
| 24 |
|
| 25 |
DATASET_PATH = "src/datasets/leaderboard_dataset.csv"
|