Spaces:
Sleeping
Sleeping
initial
Browse files- README.md +2 -2
- agent.py +13 -129
- app.py +1 -1
- requirements.txt +1 -1
- st_app.py +8 -8
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: 🐨
|
4 |
colorFrom: indigo
|
5 |
colorTo: indigo
|
@@ -7,7 +7,7 @@ sdk: docker
|
|
7 |
app_port: 8501
|
8 |
pinned: false
|
9 |
license: apache-2.0
|
10 |
-
short_description:
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: UCSF Ortho Demo
|
3 |
emoji: 🐨
|
4 |
colorFrom: indigo
|
5 |
colorTo: indigo
|
|
|
7 |
app_port: 8501
|
8 |
pinned: false
|
9 |
license: apache-2.0
|
10 |
+
short_description: Ask questions about UCSF Orthopedics
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
agent.py
CHANGED
@@ -1,154 +1,38 @@
|
|
1 |
import os
|
2 |
-
|
3 |
-
import requests
|
4 |
-
from pydantic import Field, BaseModel
|
5 |
-
|
6 |
from omegaconf import OmegaConf
|
7 |
|
8 |
from vectara_agentic.agent import Agent
|
9 |
-
from vectara_agentic.tools import ToolsFactory, VectaraToolFactory
|
10 |
|
11 |
from dotenv import load_dotenv
|
12 |
load_dotenv(override=True)
|
13 |
|
14 |
-
|
15 |
-
tickers = {
|
16 |
-
"C": "Citigroup",
|
17 |
-
"COF": "Capital One",
|
18 |
-
"JPM": "JPMorgan Chase",
|
19 |
-
"AAPL": "Apple Computer",
|
20 |
-
"GOOG": "Google",
|
21 |
-
"AMZN": "Amazon",
|
22 |
-
"SNOW": "Snowflake",
|
23 |
-
"TEAM": "Atlassian",
|
24 |
-
"TSLA": "Tesla",
|
25 |
-
"NVDA": "Nvidia",
|
26 |
-
"MSFT": "Microsoft",
|
27 |
-
"AMD": "Advanced Micro Devices",
|
28 |
-
"INTC": "Intel",
|
29 |
-
"NFLX": "Netflix",
|
30 |
-
"STT": "State Street",
|
31 |
-
"BK": "Bank of New York Mellon",
|
32 |
-
}
|
33 |
-
years = range(2015, 2025)
|
34 |
initial_prompt = "How can I help you today?"
|
35 |
|
36 |
-
def create_assistant_tools(cfg):
|
37 |
-
|
38 |
-
def get_company_info() -> list[str]:
|
39 |
-
"""
|
40 |
-
Returns a dictionary of companies you can query about. Always check this before using any other tool.
|
41 |
-
The output is a dictionary of valid ticker symbols mapped to company names.
|
42 |
-
You can use this to identify the companies you can query about, and their ticker information.
|
43 |
-
"""
|
44 |
-
return tickers
|
45 |
-
|
46 |
-
def get_valid_years() -> list[str]:
|
47 |
-
"""
|
48 |
-
Returns a list of the years for which financial reports are available.
|
49 |
-
Always check this before using any other tool.
|
50 |
-
"""
|
51 |
-
return years
|
52 |
-
|
53 |
-
# Tool to get the income statement for a given company and year using the FMP API
|
54 |
-
def fmp_income_statement(
|
55 |
-
ticker: str = Field(description="the ticker symbol of the company."),
|
56 |
-
year: int = Field(description="the year for which to get the income statement."),
|
57 |
-
) -> str:
|
58 |
-
"""
|
59 |
-
Get the income statement for a given company and year using the FMP (https://financialmodelingprep.com) API.
|
60 |
-
Returns a dictionary with the income statement data. All data is in USD, but you can convert it to more compact form like K, M, B.
|
61 |
-
"""
|
62 |
-
fmp_api_key = os.environ.get("FMP_API_KEY", None)
|
63 |
-
if fmp_api_key is None:
|
64 |
-
return "FMP_API_KEY environment variable not set. This tool does not work."
|
65 |
-
url = f"https://financialmodelingprep.com/api/v3/income-statement/{ticker}?apikey={fmp_api_key}"
|
66 |
-
response = requests.get(url)
|
67 |
-
if response.status_code == 200:
|
68 |
-
data = response.json()
|
69 |
-
income_statement = pd.DataFrame(data)
|
70 |
-
if len(income_statement) == 0 or "date" not in income_statement.columns:
|
71 |
-
return "No data found for the given ticker symbol."
|
72 |
-
income_statement["date"] = pd.to_datetime(income_statement["date"])
|
73 |
-
income_statement_specific_year = income_statement[
|
74 |
-
income_statement["date"].dt.year == int(year)
|
75 |
-
]
|
76 |
-
values_dict = income_statement_specific_year.to_dict(orient="records")[0]
|
77 |
-
return f"Financial results: {', '.join([f'{key}={value}' for key, value in values_dict.items() if key not in ['date', 'cik', 'link', 'finalLink']])}"
|
78 |
-
|
79 |
-
return f"FMP API returned error {response.status_code}. This tool does not work."
|
80 |
-
|
81 |
-
class QueryTranscriptsArgs(BaseModel):
|
82 |
-
query: str = Field(..., description="The user query, always in the form of a question", examples=["what are the risks reported?", "who are the competitors?"])
|
83 |
-
year: int | str = Field(..., description=f"The year this query relates to. An integer between {min(years)} and {max(years)} or a string specifying a condition on the year (example: '>2020').")
|
84 |
-
ticker: str = Field(..., description=f"The company ticker this query relates to. Must be a valid ticket symbol from the list {list(tickers.keys())}.")
|
85 |
-
|
86 |
-
vec_factory = VectaraToolFactory(vectara_api_key=cfg.api_key,
|
87 |
-
vectara_customer_id=cfg.customer_id,
|
88 |
-
vectara_corpus_id=cfg.corpus_id)
|
89 |
-
summarizer = 'vectara-experimental-summary-ext-2023-12-11-med-omni'
|
90 |
-
ask_transcripts = vec_factory.create_rag_tool(
|
91 |
-
tool_name = "ask_transcripts",
|
92 |
-
tool_description = """
|
93 |
-
Given a company name and year, responds to a user question about the company, based on analyst call transcripts about the company's financial reports for that year.
|
94 |
-
You can ask this tool any question about the company including risks, opportunities, financial performance, competitors and more.
|
95 |
-
""",
|
96 |
-
tool_args_schema = QueryTranscriptsArgs,
|
97 |
-
reranker = "multilingual_reranker_v1", rerank_k = 100,
|
98 |
-
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.005,
|
99 |
-
summary_num_results = 10,
|
100 |
-
vectara_summarizer = summarizer,
|
101 |
-
include_citations = True,
|
102 |
-
)
|
103 |
-
|
104 |
-
tools_factory = ToolsFactory()
|
105 |
-
return (
|
106 |
-
[tools_factory.create_tool(tool) for tool in
|
107 |
-
[
|
108 |
-
get_company_info,
|
109 |
-
get_valid_years,
|
110 |
-
fmp_income_statement,
|
111 |
-
]
|
112 |
-
] +
|
113 |
-
tools_factory.financial_tools() +
|
114 |
-
[ask_transcripts]
|
115 |
-
)
|
116 |
|
117 |
def initialize_agent(_cfg, agent_progress_callback=None):
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
- Always check the 'get_company_info' and 'get_valid_years' tools to validate company and year are valid.
|
128 |
-
- Do not include URLs unless they are provided in the output of a tool you use.
|
129 |
-
- When querying a tool for a numeric value or KPI, use a concise and non-ambiguous description of what you are looking for.
|
130 |
-
- If you calculate a metric, make sure you have all the necessary information to complete the calculation. Don't guess.
|
131 |
-
"""
|
132 |
-
|
133 |
-
agent = Agent(
|
134 |
-
tools=create_assistant_tools(_cfg),
|
135 |
-
topic="Financial data, annual reports and 10-K filings",
|
136 |
-
custom_instructions=financial_bot_instructions,
|
137 |
-
agent_progress_callback=agent_progress_callback,
|
138 |
)
|
139 |
agent.report()
|
140 |
return agent
|
141 |
|
142 |
|
143 |
def get_agent_config() -> OmegaConf:
|
144 |
-
companies = ", ".join(tickers.values())
|
145 |
cfg = OmegaConf.create({
|
146 |
'customer_id': str(os.environ['VECTARA_CUSTOMER_ID']),
|
147 |
'corpus_id': str(os.environ['VECTARA_CORPUS_ID']),
|
148 |
'api_key': str(os.environ['VECTARA_API_KEY']),
|
149 |
'examples': os.environ.get('QUERY_EXAMPLES', None),
|
150 |
-
'demo_name': "
|
151 |
-
'demo_welcome': "
|
152 |
-
'demo_description':
|
153 |
})
|
154 |
return cfg
|
|
|
1 |
import os
|
2 |
+
from typing import Optional
|
|
|
|
|
|
|
3 |
from omegaconf import OmegaConf
|
4 |
|
5 |
from vectara_agentic.agent import Agent
|
|
|
6 |
|
7 |
from dotenv import load_dotenv
|
8 |
load_dotenv(override=True)
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
initial_prompt = "How can I help you today?"
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def initialize_agent(_cfg, agent_progress_callback=None):
|
14 |
+
agent = Agent.from_corpus(
|
15 |
+
vectara_customer_id=_cfg.customer_id,
|
16 |
+
vectara_corpus_id=_cfg.corpus_id,
|
17 |
+
vectara_api_key=_cfg.api_key,
|
18 |
+
tool_name="ask_ucsf_ortho",
|
19 |
+
data_description="UCSF Orthopedic Website",
|
20 |
+
assistant_specialty="UCSF Orthopedic department",
|
21 |
+
vectara_summarizer="vectara-summary-ext-24-05-med-omni",
|
22 |
+
vectara_reranker="multilingual_reranker_v1",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
)
|
24 |
agent.report()
|
25 |
return agent
|
26 |
|
27 |
|
28 |
def get_agent_config() -> OmegaConf:
|
|
|
29 |
cfg = OmegaConf.create({
|
30 |
'customer_id': str(os.environ['VECTARA_CUSTOMER_ID']),
|
31 |
'corpus_id': str(os.environ['VECTARA_CORPUS_ID']),
|
32 |
'api_key': str(os.environ['VECTARA_API_KEY']),
|
33 |
'examples': os.environ.get('QUERY_EXAMPLES', None),
|
34 |
+
'demo_name': "UCSF Ortho Demo",
|
35 |
+
'demo_welcome': "",
|
36 |
+
'demo_description': "This assistant can help you with any questions about UCSF Orthopedic department."
|
37 |
})
|
38 |
return cfg
|
app.py
CHANGED
@@ -13,6 +13,6 @@ if "feedback_key" not in st.session_state:
|
|
13 |
st.session_state.feedback_key = 0
|
14 |
|
15 |
if __name__ == "__main__":
|
16 |
-
st.set_page_config(page_title="
|
17 |
nest_asyncio.apply()
|
18 |
asyncio.run(launch_bot())
|
|
|
13 |
st.session_state.feedback_key = 0
|
14 |
|
15 |
if __name__ == "__main__":
|
16 |
+
st.set_page_config(page_title="UCSF Ortho Assistant", layout="wide")
|
17 |
nest_asyncio.apply()
|
18 |
asyncio.run(launch_bot())
|
requirements.txt
CHANGED
@@ -6,4 +6,4 @@ streamlit_feedback==0.1.3
|
|
6 |
uuid==1.30
|
7 |
langdetect==1.0.9
|
8 |
langcodes==3.4.0
|
9 |
-
vectara-agentic==0.1.
|
|
|
6 |
uuid==1.30
|
7 |
langdetect==1.0.9
|
8 |
langcodes==3.4.0
|
9 |
+
vectara-agentic==0.1.24
|
st_app.py
CHANGED
@@ -91,12 +91,12 @@ async def launch_bot():
|
|
91 |
if st.button('Show Logs'):
|
92 |
show_modal()
|
93 |
|
94 |
-
st.divider()
|
95 |
-
st.markdown(
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
)
|
100 |
|
101 |
if "messages" not in st.session_state.keys():
|
102 |
reset()
|
@@ -132,8 +132,8 @@ async def launch_bot():
|
|
132 |
if st.session_state.prompt:
|
133 |
with st.chat_message("assistant", avatar='🤖'):
|
134 |
st.session_state.status = st.status('Processing...', expanded=False)
|
135 |
-
|
136 |
-
res = escape_dollars_outside_latex(
|
137 |
message = {"role": "assistant", "content": res, "avatar": '🤖'}
|
138 |
st.session_state.messages.append(message)
|
139 |
st.markdown(res)
|
|
|
91 |
if st.button('Show Logs'):
|
92 |
show_modal()
|
93 |
|
94 |
+
# st.divider()
|
95 |
+
# st.markdown(
|
96 |
+
# "## How this works?\n"
|
97 |
+
# "This app was built with [Vectara](https://vectara.com).\n\n"
|
98 |
+
# "It demonstrates the use of Agentic RAG functionality with Vectara"
|
99 |
+
# )
|
100 |
|
101 |
if "messages" not in st.session_state.keys():
|
102 |
reset()
|
|
|
132 |
if st.session_state.prompt:
|
133 |
with st.chat_message("assistant", avatar='🤖'):
|
134 |
st.session_state.status = st.status('Processing...', expanded=False)
|
135 |
+
response = st.session_state.agent.chat(st.session_state.prompt)
|
136 |
+
res = escape_dollars_outside_latex(response.response)
|
137 |
message = {"role": "assistant", "content": res, "avatar": '🤖'}
|
138 |
st.session_state.messages.append(message)
|
139 |
st.markdown(res)
|