File size: 14,371 Bytes
f670afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
# flake8: noqa
import importlib
import warnings

import torch
import torch.nn as nn

from imaginaire.model_utils.fs_vid2vid import (get_face_mask, get_fg_mask,
                                               get_part_mask, pick_image,
                                               resample)


class MaskedL1Loss(nn.Module):
    r"""Masked L1 loss constructor."""

    def __init__(self, normalize_over_valid=False):
        super(MaskedL1Loss, self).__init__()
        self.criterion = nn.L1Loss()
        self.normalize_over_valid = normalize_over_valid

    def forward(self, input, target, mask):
        r"""Masked L1 loss computation.

        Args:
            input (tensor): Input tensor.
            target (tensor): Target tensor.
            mask (tensor): Mask to be applied to the output loss.

        Returns:
            (tensor): Loss value.
        """
        mask = mask.expand_as(input)
        loss = self.criterion(input * mask, target * mask)
        if self.normalize_over_valid:
            # The loss has been averaged over all pixels.
            # Only average over regions which are valid.
            loss = loss * torch.numel(mask) / (torch.sum(mask) + 1e-6)
        return loss


class FlowLoss(nn.Module):
    r"""Flow loss constructor.

    Args:
        cfg (obj): Configuration.
    """

    def __init__(self, cfg):
        super(FlowLoss, self).__init__()
        self.cfg = cfg
        self.data_cfg = cfg.data
        self.criterion = nn.L1Loss()
        self.criterionMasked = MaskedL1Loss()
        flow_module = importlib.import_module(cfg.flow_network.type)
        self.flowNet = flow_module.FlowNet(pretrained=True)
        self.warp_ref = getattr(cfg.gen.flow, 'warp_ref', False)
        self.pose_cfg = pose_cfg = getattr(cfg.data, 'for_pose_dataset', None)
        self.for_pose_dataset = pose_cfg is not None
        self.has_fg = getattr(cfg.data, 'has_foreground', False)

    def forward(self, data, net_G_output, current_epoch):
        r"""Compute losses on the output flow and occlusion mask.

        Args:
            data (dict): Input data.
            net_G_output (dict): Generator output.
            current_epoch (int): Current training epoch number.
        Returns:
            (dict):
              - loss_flow_L1 (tensor): L1 loss compared to ground truth flow.
              - loss_flow_warp (tensor): L1 loss between the warped image and the
                target image when using the flow to warp.
              - loss_mask (tensor): Loss for the occlusion mask.
        """
        tgt_label, tgt_image = data['label'], data['image']

        fake_image = net_G_output['fake_images']
        warped_images = net_G_output['warped_images']
        flow = net_G_output['fake_flow_maps']
        occ_mask = net_G_output['fake_occlusion_masks']

        if self.warp_ref:
            # Pick the most similar reference image to warp.
            ref_labels, ref_images = data['ref_labels'], data['ref_images']
            ref_idx = net_G_output['ref_idx']
            ref_label, ref_image = pick_image([ref_labels, ref_images], ref_idx)
        else:
            ref_label = ref_image = None

        # Compute the ground truth flows and confidence maps.
        flow_gt_prev = flow_gt_ref = conf_gt_prev = conf_gt_ref = None
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            if self.warp_ref:
                # Compute GT for warping reference -> target.
                if self.for_pose_dataset:
                    # Use DensePose maps to compute flows for pose dataset.
                    flow_gt_ref, conf_gt_ref = self.flowNet(tgt_label[:, :3],
                                                            ref_label[:, :3])
                else:
                    # Use RGB images for other datasets.
                    flow_gt_ref, conf_gt_ref = self.flowNet(tgt_image,
                                                            ref_image)

            if current_epoch >= self.cfg.single_frame_epoch and \
                    data['real_prev_image'] is not None:
                # Compute GT for warping previous -> target.
                tgt_image_prev = data['real_prev_image']
                flow_gt_prev, conf_gt_prev = self.flowNet(tgt_image,
                                                          tgt_image_prev)

        flow_gt = [flow_gt_ref, flow_gt_prev]
        flow_conf_gt = [conf_gt_ref, conf_gt_prev]
        # Get the foreground masks.
        fg_mask, ref_fg_mask = get_fg_mask([tgt_label, ref_label], self.has_fg)

        # Compute losses for flow maps and masks.
        loss_flow_L1, loss_flow_warp, body_mask_diff = \
            self.compute_flow_losses(flow, warped_images, tgt_image, flow_gt,
                                     flow_conf_gt, fg_mask, tgt_label,
                                     ref_label)

        loss_mask = self.compute_mask_losses(
            occ_mask, fake_image, warped_images, tgt_label, tgt_image,
            fg_mask, ref_fg_mask, body_mask_diff)

        return loss_flow_L1, loss_flow_warp, loss_mask

    def compute_flow_losses(self, flow, warped_images, tgt_image, flow_gt,
                            flow_conf_gt, fg_mask, tgt_label, ref_label):
        r"""Compute losses on the generated flow maps.

        Args:
            flow (tensor or list of tensors): Generated flow maps.
                warped_images (tensor or list of tensors): Warped images using the
                flow maps.
            tgt_image (tensor): Target image for the warped image.
                flow_gt (tensor or list of tensors): Ground truth flow maps.
            flow_conf_gt (tensor or list of tensors): Confidence for the ground
                truth flow maps.
            fg_mask (tensor): Foreground mask for the target image.
            tgt_label (tensor): Target label map.
            ref_label (tensor): Reference label map.
        Returns:
            (dict):
              - loss_flow_L1 (tensor): L1 loss compared to ground truth flow.
              - loss_flow_warp (tensor): L1 loss between the warped image and the
                target image when using the flow to warp.
              - body_mask_diff (tensor): Difference between warped body part map
                and target body part map. Used for pose dataset only.
        """
        loss_flow_L1 = torch.tensor(0., device=torch.device('cuda'))
        loss_flow_warp = torch.tensor(0., device=torch.device('cuda'))
        if isinstance(flow, list):
            # Compute flow losses for both warping reference -> target and
            # previous -> target.
            for i in range(len(flow)):
                loss_flow_L1_i, loss_flow_warp_i = \
                    self.compute_flow_loss(flow[i], warped_images[i], tgt_image,
                                           flow_gt[i], flow_conf_gt[i], fg_mask)
                loss_flow_L1 += loss_flow_L1_i
                loss_flow_warp += loss_flow_warp_i
        else:
            # Compute loss for warping either reference or previous images.
            loss_flow_L1, loss_flow_warp = \
                self.compute_flow_loss(flow, warped_images, tgt_image,
                                       flow_gt[-1], flow_conf_gt[-1], fg_mask)

        # For pose dataset only.
        body_mask_diff = None
        if self.warp_ref:
            if self.for_pose_dataset:
                # Warped reference body part map should be similar to target
                # body part map.
                body_mask = get_part_mask(tgt_label[:, 2])
                ref_body_mask = get_part_mask(ref_label[:, 2])
                warped_ref_body_mask = resample(ref_body_mask, flow[0])
                loss_flow_warp += self.criterion(warped_ref_body_mask,
                                                 body_mask)
                body_mask_diff = torch.sum(
                    abs(warped_ref_body_mask - body_mask), dim=1, keepdim=True)

            if self.has_fg:
                # Warped reference foreground map should be similar to target
                # foreground map.
                fg_mask, ref_fg_mask = \
                    get_fg_mask([tgt_label, ref_label], True)
                warped_ref_fg_mask = resample(ref_fg_mask, flow[0])
                loss_flow_warp += self.criterion(warped_ref_fg_mask, fg_mask)

        return loss_flow_L1, loss_flow_warp, body_mask_diff

    def compute_flow_loss(self, flow, warped_image, tgt_image, flow_gt,
                          flow_conf_gt, fg_mask):
        r"""Compute losses on the generated flow map.

        Args:
            flow (tensor): Generated flow map.
            warped_image (tensor): Warped image using the flow map.
            tgt_image (tensor): Target image for the warped image.
            flow_gt (tensor): Ground truth flow map.
            flow_conf_gt (tensor): Confidence for the ground truth flow map.
            fg_mask (tensor): Foreground mask for the target image.
        Returns:
            (dict):
              - loss_flow_L1 (tensor): L1 loss compared to ground truth flow.
              - loss_flow_warp (tensor): L1 loss between the warped image and
              the target image when using the flow to warp.
        """
        loss_flow_L1 = torch.tensor(0., device=torch.device('cuda'))
        loss_flow_warp = torch.tensor(0., device=torch.device('cuda'))
        if flow is not None and flow_gt is not None:
            # L1 loss compared to flow ground truth.
            loss_flow_L1 = self.criterionMasked(flow, flow_gt,
                                                flow_conf_gt * fg_mask)
        if warped_image is not None:
            # L1 loss between warped image and target image.
            loss_flow_warp = self.criterion(warped_image, tgt_image)
        return loss_flow_L1, loss_flow_warp

    def compute_mask_losses(self, occ_mask, fake_image, warped_image,
                            tgt_label, tgt_image, fg_mask, ref_fg_mask,
                            body_mask_diff):
        r"""Compute losses on the generated occlusion masks.

        Args:
            occ_mask (tensor or list of tensors): Generated occlusion masks.
            fake_image (tensor): Generated image.
            warped_image (tensor or list of tensors): Warped images using the
                flow maps.
            tgt_label (tensor): Target label map.
            tgt_image (tensor): Target image for the warped image.
            fg_mask (tensor): Foreground mask for the target image.
            ref_fg_mask (tensor): Foreground mask for the reference image.
            body_mask_diff (tensor): Difference between warped body part map
            and target body part map. Used for pose dataset only.
        Returns:
            (tensor): Loss for the mask.
        """
        loss_mask = torch.tensor(0., device=torch.device('cuda'))

        if isinstance(occ_mask, list):
            # Compute occlusion mask losses for both warping reference -> target
            # and previous -> target.
            for i in range(len(occ_mask)):
                loss_mask += self.compute_mask_loss(occ_mask[i],
                                                    warped_image[i],
                                                    tgt_image)
        else:
            # Compute loss for warping either reference or previous images.
            loss_mask += self.compute_mask_loss(occ_mask, warped_image,
                                                tgt_image)

        if self.warp_ref:
            ref_occ_mask = occ_mask[0]
            dummy0 = torch.zeros_like(ref_occ_mask)
            dummy1 = torch.ones_like(ref_occ_mask)
            if self.for_pose_dataset:
                # Enforce output to use more warped reference image for
                # face region.
                face_mask = get_face_mask(tgt_label[:, 2]).unsqueeze(1)
                AvgPool = torch.nn.AvgPool2d(15, padding=7, stride=1)
                face_mask = AvgPool(face_mask)
                loss_mask += self.criterionMasked(ref_occ_mask, dummy0,
                                                  face_mask)
                loss_mask += self.criterionMasked(fake_image, warped_image[0],
                                                  face_mask)
                # Enforce output to use more hallucinated image for discrepancy
                # regions of body part masks between warped reference and
                # target image.
                loss_mask += self.criterionMasked(ref_occ_mask, dummy1,
                                                  body_mask_diff)

            if self.has_fg:
                # Enforce output to use more hallucinated image for discrepancy
                # regions of foreground masks between reference and target
                # image.
                fg_mask_diff = ((ref_fg_mask - fg_mask) > 0).float()
                loss_mask += self.criterionMasked(ref_occ_mask, dummy1,
                                                  fg_mask_diff)
        return loss_mask

    def compute_mask_loss(self, occ_mask, warped_image, tgt_image):
        r"""Compute losses on the generated occlusion mask.

        Args:
            occ_mask (tensor): Generated occlusion mask.
            warped_image (tensor): Warped image using the flow map.
            tgt_image (tensor): Target image for the warped image.
        Returns:
            (tensor): Loss for the mask.
        """
        loss_mask = torch.tensor(0., device=torch.device('cuda'))
        if occ_mask is not None:
            dummy0 = torch.zeros_like(occ_mask)
            dummy1 = torch.ones_like(occ_mask)

            # Compute the confidence map based on L1 distance between warped
            # and GT image.
            img_diff = torch.sum(abs(warped_image - tgt_image), dim=1,
                                 keepdim=True)
            conf = torch.clamp(1 - img_diff, 0, 1)

            # Force mask value to be small if warped image is similar to GT,
            # and vice versa.
            loss_mask = self.criterionMasked(occ_mask, dummy0, conf)
            loss_mask += self.criterionMasked(occ_mask, dummy1, 1 - conf)

        return loss_mask