Spaces:
Runtime error
Runtime error
File size: 14,371 Bytes
f670afc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
# flake8: noqa
import importlib
import warnings
import torch
import torch.nn as nn
from imaginaire.model_utils.fs_vid2vid import (get_face_mask, get_fg_mask,
get_part_mask, pick_image,
resample)
class MaskedL1Loss(nn.Module):
r"""Masked L1 loss constructor."""
def __init__(self, normalize_over_valid=False):
super(MaskedL1Loss, self).__init__()
self.criterion = nn.L1Loss()
self.normalize_over_valid = normalize_over_valid
def forward(self, input, target, mask):
r"""Masked L1 loss computation.
Args:
input (tensor): Input tensor.
target (tensor): Target tensor.
mask (tensor): Mask to be applied to the output loss.
Returns:
(tensor): Loss value.
"""
mask = mask.expand_as(input)
loss = self.criterion(input * mask, target * mask)
if self.normalize_over_valid:
# The loss has been averaged over all pixels.
# Only average over regions which are valid.
loss = loss * torch.numel(mask) / (torch.sum(mask) + 1e-6)
return loss
class FlowLoss(nn.Module):
r"""Flow loss constructor.
Args:
cfg (obj): Configuration.
"""
def __init__(self, cfg):
super(FlowLoss, self).__init__()
self.cfg = cfg
self.data_cfg = cfg.data
self.criterion = nn.L1Loss()
self.criterionMasked = MaskedL1Loss()
flow_module = importlib.import_module(cfg.flow_network.type)
self.flowNet = flow_module.FlowNet(pretrained=True)
self.warp_ref = getattr(cfg.gen.flow, 'warp_ref', False)
self.pose_cfg = pose_cfg = getattr(cfg.data, 'for_pose_dataset', None)
self.for_pose_dataset = pose_cfg is not None
self.has_fg = getattr(cfg.data, 'has_foreground', False)
def forward(self, data, net_G_output, current_epoch):
r"""Compute losses on the output flow and occlusion mask.
Args:
data (dict): Input data.
net_G_output (dict): Generator output.
current_epoch (int): Current training epoch number.
Returns:
(dict):
- loss_flow_L1 (tensor): L1 loss compared to ground truth flow.
- loss_flow_warp (tensor): L1 loss between the warped image and the
target image when using the flow to warp.
- loss_mask (tensor): Loss for the occlusion mask.
"""
tgt_label, tgt_image = data['label'], data['image']
fake_image = net_G_output['fake_images']
warped_images = net_G_output['warped_images']
flow = net_G_output['fake_flow_maps']
occ_mask = net_G_output['fake_occlusion_masks']
if self.warp_ref:
# Pick the most similar reference image to warp.
ref_labels, ref_images = data['ref_labels'], data['ref_images']
ref_idx = net_G_output['ref_idx']
ref_label, ref_image = pick_image([ref_labels, ref_images], ref_idx)
else:
ref_label = ref_image = None
# Compute the ground truth flows and confidence maps.
flow_gt_prev = flow_gt_ref = conf_gt_prev = conf_gt_ref = None
with warnings.catch_warnings():
warnings.simplefilter("ignore")
if self.warp_ref:
# Compute GT for warping reference -> target.
if self.for_pose_dataset:
# Use DensePose maps to compute flows for pose dataset.
flow_gt_ref, conf_gt_ref = self.flowNet(tgt_label[:, :3],
ref_label[:, :3])
else:
# Use RGB images for other datasets.
flow_gt_ref, conf_gt_ref = self.flowNet(tgt_image,
ref_image)
if current_epoch >= self.cfg.single_frame_epoch and \
data['real_prev_image'] is not None:
# Compute GT for warping previous -> target.
tgt_image_prev = data['real_prev_image']
flow_gt_prev, conf_gt_prev = self.flowNet(tgt_image,
tgt_image_prev)
flow_gt = [flow_gt_ref, flow_gt_prev]
flow_conf_gt = [conf_gt_ref, conf_gt_prev]
# Get the foreground masks.
fg_mask, ref_fg_mask = get_fg_mask([tgt_label, ref_label], self.has_fg)
# Compute losses for flow maps and masks.
loss_flow_L1, loss_flow_warp, body_mask_diff = \
self.compute_flow_losses(flow, warped_images, tgt_image, flow_gt,
flow_conf_gt, fg_mask, tgt_label,
ref_label)
loss_mask = self.compute_mask_losses(
occ_mask, fake_image, warped_images, tgt_label, tgt_image,
fg_mask, ref_fg_mask, body_mask_diff)
return loss_flow_L1, loss_flow_warp, loss_mask
def compute_flow_losses(self, flow, warped_images, tgt_image, flow_gt,
flow_conf_gt, fg_mask, tgt_label, ref_label):
r"""Compute losses on the generated flow maps.
Args:
flow (tensor or list of tensors): Generated flow maps.
warped_images (tensor or list of tensors): Warped images using the
flow maps.
tgt_image (tensor): Target image for the warped image.
flow_gt (tensor or list of tensors): Ground truth flow maps.
flow_conf_gt (tensor or list of tensors): Confidence for the ground
truth flow maps.
fg_mask (tensor): Foreground mask for the target image.
tgt_label (tensor): Target label map.
ref_label (tensor): Reference label map.
Returns:
(dict):
- loss_flow_L1 (tensor): L1 loss compared to ground truth flow.
- loss_flow_warp (tensor): L1 loss between the warped image and the
target image when using the flow to warp.
- body_mask_diff (tensor): Difference between warped body part map
and target body part map. Used for pose dataset only.
"""
loss_flow_L1 = torch.tensor(0., device=torch.device('cuda'))
loss_flow_warp = torch.tensor(0., device=torch.device('cuda'))
if isinstance(flow, list):
# Compute flow losses for both warping reference -> target and
# previous -> target.
for i in range(len(flow)):
loss_flow_L1_i, loss_flow_warp_i = \
self.compute_flow_loss(flow[i], warped_images[i], tgt_image,
flow_gt[i], flow_conf_gt[i], fg_mask)
loss_flow_L1 += loss_flow_L1_i
loss_flow_warp += loss_flow_warp_i
else:
# Compute loss for warping either reference or previous images.
loss_flow_L1, loss_flow_warp = \
self.compute_flow_loss(flow, warped_images, tgt_image,
flow_gt[-1], flow_conf_gt[-1], fg_mask)
# For pose dataset only.
body_mask_diff = None
if self.warp_ref:
if self.for_pose_dataset:
# Warped reference body part map should be similar to target
# body part map.
body_mask = get_part_mask(tgt_label[:, 2])
ref_body_mask = get_part_mask(ref_label[:, 2])
warped_ref_body_mask = resample(ref_body_mask, flow[0])
loss_flow_warp += self.criterion(warped_ref_body_mask,
body_mask)
body_mask_diff = torch.sum(
abs(warped_ref_body_mask - body_mask), dim=1, keepdim=True)
if self.has_fg:
# Warped reference foreground map should be similar to target
# foreground map.
fg_mask, ref_fg_mask = \
get_fg_mask([tgt_label, ref_label], True)
warped_ref_fg_mask = resample(ref_fg_mask, flow[0])
loss_flow_warp += self.criterion(warped_ref_fg_mask, fg_mask)
return loss_flow_L1, loss_flow_warp, body_mask_diff
def compute_flow_loss(self, flow, warped_image, tgt_image, flow_gt,
flow_conf_gt, fg_mask):
r"""Compute losses on the generated flow map.
Args:
flow (tensor): Generated flow map.
warped_image (tensor): Warped image using the flow map.
tgt_image (tensor): Target image for the warped image.
flow_gt (tensor): Ground truth flow map.
flow_conf_gt (tensor): Confidence for the ground truth flow map.
fg_mask (tensor): Foreground mask for the target image.
Returns:
(dict):
- loss_flow_L1 (tensor): L1 loss compared to ground truth flow.
- loss_flow_warp (tensor): L1 loss between the warped image and
the target image when using the flow to warp.
"""
loss_flow_L1 = torch.tensor(0., device=torch.device('cuda'))
loss_flow_warp = torch.tensor(0., device=torch.device('cuda'))
if flow is not None and flow_gt is not None:
# L1 loss compared to flow ground truth.
loss_flow_L1 = self.criterionMasked(flow, flow_gt,
flow_conf_gt * fg_mask)
if warped_image is not None:
# L1 loss between warped image and target image.
loss_flow_warp = self.criterion(warped_image, tgt_image)
return loss_flow_L1, loss_flow_warp
def compute_mask_losses(self, occ_mask, fake_image, warped_image,
tgt_label, tgt_image, fg_mask, ref_fg_mask,
body_mask_diff):
r"""Compute losses on the generated occlusion masks.
Args:
occ_mask (tensor or list of tensors): Generated occlusion masks.
fake_image (tensor): Generated image.
warped_image (tensor or list of tensors): Warped images using the
flow maps.
tgt_label (tensor): Target label map.
tgt_image (tensor): Target image for the warped image.
fg_mask (tensor): Foreground mask for the target image.
ref_fg_mask (tensor): Foreground mask for the reference image.
body_mask_diff (tensor): Difference between warped body part map
and target body part map. Used for pose dataset only.
Returns:
(tensor): Loss for the mask.
"""
loss_mask = torch.tensor(0., device=torch.device('cuda'))
if isinstance(occ_mask, list):
# Compute occlusion mask losses for both warping reference -> target
# and previous -> target.
for i in range(len(occ_mask)):
loss_mask += self.compute_mask_loss(occ_mask[i],
warped_image[i],
tgt_image)
else:
# Compute loss for warping either reference or previous images.
loss_mask += self.compute_mask_loss(occ_mask, warped_image,
tgt_image)
if self.warp_ref:
ref_occ_mask = occ_mask[0]
dummy0 = torch.zeros_like(ref_occ_mask)
dummy1 = torch.ones_like(ref_occ_mask)
if self.for_pose_dataset:
# Enforce output to use more warped reference image for
# face region.
face_mask = get_face_mask(tgt_label[:, 2]).unsqueeze(1)
AvgPool = torch.nn.AvgPool2d(15, padding=7, stride=1)
face_mask = AvgPool(face_mask)
loss_mask += self.criterionMasked(ref_occ_mask, dummy0,
face_mask)
loss_mask += self.criterionMasked(fake_image, warped_image[0],
face_mask)
# Enforce output to use more hallucinated image for discrepancy
# regions of body part masks between warped reference and
# target image.
loss_mask += self.criterionMasked(ref_occ_mask, dummy1,
body_mask_diff)
if self.has_fg:
# Enforce output to use more hallucinated image for discrepancy
# regions of foreground masks between reference and target
# image.
fg_mask_diff = ((ref_fg_mask - fg_mask) > 0).float()
loss_mask += self.criterionMasked(ref_occ_mask, dummy1,
fg_mask_diff)
return loss_mask
def compute_mask_loss(self, occ_mask, warped_image, tgt_image):
r"""Compute losses on the generated occlusion mask.
Args:
occ_mask (tensor): Generated occlusion mask.
warped_image (tensor): Warped image using the flow map.
tgt_image (tensor): Target image for the warped image.
Returns:
(tensor): Loss for the mask.
"""
loss_mask = torch.tensor(0., device=torch.device('cuda'))
if occ_mask is not None:
dummy0 = torch.zeros_like(occ_mask)
dummy1 = torch.ones_like(occ_mask)
# Compute the confidence map based on L1 distance between warped
# and GT image.
img_diff = torch.sum(abs(warped_image - tgt_image), dim=1,
keepdim=True)
conf = torch.clamp(1 - img_diff, 0, 1)
# Force mask value to be small if warped image is similar to GT,
# and vice versa.
loss_mask = self.criterionMasked(occ_mask, dummy0, conf)
loss_mask += self.criterionMasked(occ_mask, dummy1, 1 - conf)
return loss_mask
|