Spaces:
Runtime error
Runtime error
File size: 10,008 Bytes
f670afc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
// Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
//
// This work is made available under the Nvidia Source Code License-NC.
// To view a copy of this license, check out LICENSE.md
#include <torch/types.h>
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>
#include <cuda.h>
#include <cuda_runtime.h>
#include <math_constants.h>
#include <time.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <vector>
#define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
struct PE_Params {
int ndegrees;
int pre_size;
int post_size;
bool incl_orig;
};
// const int TILE_DIM_X = 16; // channel dim
// const int TILE_DIM_Y = 64; // entry dim
// dim3 dimGrid((p.post_size+TILE_DIM_X-1)/TILE_DIM_X, (p.pre_size+TILE_DIM_Y-1)/TILE_DIM_Y, 1);
// dim3 dimBlock(TILE_DIM_X, TILE_DIM_Y, 1);
template <int TILE_DIM_X, int TILE_DIM_Y, int DUP_Y>
__global__ void positional_encoding_kernel(
float* __restrict__ out_feature,
const float* __restrict__ in_feature, const PE_Params p) {
const int idx_feat = blockIdx.x * TILE_DIM_X + threadIdx.x;
const int idx_entry_base = blockIdx.y * TILE_DIM_Y * DUP_Y + threadIdx.y * DUP_Y;
if (idx_feat >= p.post_size) {
return;
}
int stride = p.ndegrees*2;
if (p.incl_orig) {
stride += 1;
}
for (int j=0; j<DUP_Y; j++) {
int idx_entry = idx_entry_base + j;
if (idx_entry >= p.pre_size) {
return;
}
float data = in_feature[idx_entry*p.post_size + idx_feat];
for (int i=0; i<p.ndegrees; i++) {
float rad = data * CUDART_PI_F * exp2f(i);
//float rad = scalbnf(data * CUDART_PI_F, i);
float sinrad, cosrad;
sincosf(rad, &sinrad, &cosrad);
out_feature[idx_entry*p.post_size*stride + i*2*p.post_size + idx_feat] = sinrad;
out_feature[idx_entry*p.post_size*stride + (i*2+1)*p.post_size + idx_feat] = cosrad;
}
if (p.incl_orig) {
out_feature[idx_entry*p.post_size*stride + (stride-1)*p.post_size + idx_feat] = data;
}
}
}
template <int TILE_DIM_X, int TILE_DIM_Y, int DUP_Y>
__global__ void positional_encoding_backward_kernel(
float* __restrict__ in_feature_grad,
const float* __restrict__ out_feature_grad, const float* __restrict__ out_feature, const PE_Params p) {
int idx_feat = blockIdx.x * TILE_DIM_X + threadIdx.x;
const int idx_entry_base = blockIdx.y * TILE_DIM_Y * DUP_Y + threadIdx.y * DUP_Y;
if (idx_feat >= p.post_size) {
return;
}
int stride = p.ndegrees*2;
if (p.incl_orig) {
stride += 1;
}
for (int j=0; j<DUP_Y; j++) {
int idx_entry = idx_entry_base + j;
if (idx_entry >= p.pre_size) {
return;
}
float grad = 0.0f;
for (int i=0; i<p.ndegrees; i++) {
float grad_t;
grad_t = out_feature_grad[idx_entry*p.post_size*stride + i*2*p.post_size + idx_feat] *
out_feature[idx_entry*p.post_size*stride + (i*2+1)*p.post_size + idx_feat]; // cos(x*pi*(2^i))
grad_t -= out_feature_grad[idx_entry*p.post_size*stride + (i*2+1)*p.post_size + idx_feat] *
out_feature[idx_entry*p.post_size*stride + (i*2)*p.post_size + idx_feat]; // -sin(x*pi*(2^i))
grad += grad_t * CUDART_PI_F * exp2f(i);
}
if (p.incl_orig) {
grad += out_feature_grad[idx_entry*p.post_size*stride + (stride-1)*p.post_size + idx_feat];
}
in_feature_grad[idx_entry*p.post_size + idx_feat] = grad;
}
}
// Input:
// in_feature: float32 [..., N, ...]
// ndegree: int32 Degrees of PE encoding
// dim: int32 Dimension to concatenate
// incl_orig: bool Whether to include original feature vector or not
// Output:
// out_feature: float32 [..., N*ndegree*2+incl_orig, ...]
// std::vector<torch::Tensor>
torch::Tensor positional_encoding_cuda(const torch::Tensor& in_feature, int ndegrees, int dim, bool incl_orig) {
CHECK_CUDA(in_feature);
int curDevice = -1;
cudaGetDevice(&curDevice);
cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice);
torch::Device device = in_feature.device();
assert(in_feature.dtype() == torch::kFloat32);
// Handle negative index
if (dim < 0) {
dim = in_feature.dim() + dim;
}
assert(dim >= 0 && dim < in_feature.dim());
// No need to be contiguous. Input and output has the same memory layout.
CHECK_CONTIGUOUS(in_feature);
PE_Params p;
p.ndegrees = ndegrees;
p.incl_orig = incl_orig;
// This only works for contiguous tensors...
int pre_size = 1;
int post_size = 1;
for (int i=0; i<dim; i++) {
pre_size *= in_feature.size(i);
}
for (int i=dim; i<in_feature.dim(); i++) {
post_size *= in_feature.size(i);
}
p.pre_size = pre_size;
p.post_size = post_size;
// Calculate output shape
std::vector<int64_t> out_feature_shape;
for (int i=0; i<in_feature.dim(); i++) {
int64_t dim_t = in_feature.size(i);
if (i == dim) {
if (incl_orig) {
dim_t = dim_t*(ndegrees*2+1);
} else {
dim_t = dim_t*ndegrees*2;
}
}
out_feature_shape.push_back(dim_t);
}
// Always produce contiguous output
torch::Tensor out_feature = torch::empty(out_feature_shape, torch::TensorOptions().dtype(torch::kFloat32).device(device));
// Launch CUDA kernel
// Case 1: Concat at the last dimension (post_size < pre_size) --> Each thread handle a single post_size
// Case 2: Concat at the middle (post_size > pre_size) --> Each thread handle
const int TILE_DIM_X = 16; // channel dim
const int TILE_DIM_Y = 64; // entry dim
//const int DUP_Y = 4; // Each thread handle multiple entries to save threads
const int DUP_Y = 8; // DGXA 64 samples per ray @ 256x256
dim3 dimGrid((p.post_size+TILE_DIM_X-1)/TILE_DIM_X, (p.pre_size+(TILE_DIM_Y*DUP_Y)-1)/(TILE_DIM_Y*DUP_Y), 1);
dim3 dimBlock(TILE_DIM_X, TILE_DIM_Y, 1);
positional_encoding_kernel<TILE_DIM_X, TILE_DIM_Y, DUP_Y><<<dimGrid, dimBlock, 0, stream>>>(
out_feature.data_ptr<float>(),
in_feature.data_ptr<float>(), p
);
THCudaCheck(cudaGetLastError());
return out_feature;
}
//in_feature_grad = voxrender_op.positional_encoding_backward(out_feature_grad, out_feature, ctx.pe_degrees, ctx.dim, ctx.incl_orig);
// Input:
// out_feature_grad: float32 [..., N*ndegree*2+incl_orig, ...]
// out_feature: float32 [..., N*ndegree*2+incl_orig, ...]
// ndegrees: int32 Degrees of PE encoding
// dim: int32 Dimension to concatenate
// incl_orig: bool Whether to include original feature vector or not
// Output:
// in_feature_grad: float32 [..., N, ...]
// std::vector<torch::Tensor>
torch::Tensor positional_encoding_backward_cuda(const torch::Tensor& out_feature_grad_, const torch::Tensor& out_feature, int ndegrees, int dim, bool incl_orig) {
CHECK_CUDA(out_feature_grad_);
CHECK_CUDA(out_feature);
const torch::Tensor out_feature_grad = out_feature_grad_.contiguous();
int curDevice = -1;
cudaGetDevice(&curDevice);
cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice);
torch::Device device = out_feature_grad.device();
assert(out_feature_grad.dtype() == torch::kFloat32);
assert(out_feature.dtype() == torch::kFloat32);
assert(out_feature_grad.sizes() == out_feature.sizes());
// Handle negative index
if (dim < 0) {
dim = out_feature.dim() + dim;
}
assert(dim >= 0 && dim < out_feature.dim());
CHECK_CONTIGUOUS(out_feature_grad);
CHECK_CONTIGUOUS(out_feature);
PE_Params p;
p.ndegrees = ndegrees;
p.incl_orig = incl_orig;
int expansion_factor = ndegrees*2;
if (incl_orig) {
expansion_factor += 1;
}
// This only works for contiguous tensors...
int pre_size = 1;
int post_size = 1;
for (int i=0; i<dim; i++) {
pre_size *= out_feature.size(i);
}
for (int i=dim; i<out_feature.dim(); i++) {
post_size *= out_feature.size(i);
}
post_size = post_size / expansion_factor;
p.pre_size = pre_size;
p.post_size = post_size;
// Calculate output shape
std::vector<int64_t> out_feature_shape;
for (int i=0; i<out_feature.dim(); i++) {
int64_t dim_t = out_feature.size(i);
if (i == dim) {
dim_t = dim_t / expansion_factor;
}
out_feature_shape.push_back(dim_t);
}
// Always produce contiguous output
torch::Tensor in_feature_grad = torch::empty(out_feature_shape, torch::TensorOptions().dtype(torch::kFloat32).device(device));
// Launch CUDA kernel
// Case 1: Concat at the last dimension (post_size < pre_size) --> Each thread handle a single post_size
// Case 2: Concat at the middle (post_size > pre_size) --> Each thread handle
const int TILE_DIM_X = 16; // channel dim
const int TILE_DIM_Y = 64; // entry dim
//const int DUP_Y = 4; // Nothing to amortize
const int DUP_Y = 8; // DGXA
dim3 dimGrid((p.post_size+TILE_DIM_X-1)/TILE_DIM_X, (p.pre_size+(TILE_DIM_Y*DUP_Y)-1)/(TILE_DIM_Y*DUP_Y), 1);
dim3 dimBlock(TILE_DIM_X, TILE_DIM_Y, 1);
positional_encoding_backward_kernel<TILE_DIM_X, TILE_DIM_Y, DUP_Y><<<dimGrid, dimBlock, 0, stream>>>(
in_feature_grad.data_ptr<float>(),
out_feature_grad.data_ptr<float>(), out_feature.data_ptr<float>(), p
);
THCudaCheck(cudaGetLastError());
return in_feature_grad;
}
|