File size: 8,615 Bytes
f670afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# flake8: noqa
import numpy as np
from types import SimpleNamespace

import torch
from torch import nn

import bias_act_cuda

# ----------------------------------------------------------------------------

activation_funcs = {
    'linear': SimpleNamespace(func=lambda x, **_: x, def_alpha=0, def_gain=1,
                              cuda_idx=1, ref='', has_2nd_grad=False),
    'relu': SimpleNamespace(func=lambda x, **_: torch.nn.functional.relu(x),
                            def_alpha=0, def_gain=np.sqrt(2), cuda_idx=2,
                            ref='y', has_2nd_grad=False),
    'leakyrelu': SimpleNamespace(
        func=lambda x, alpha, **_: torch.nn.functional.leaky_relu(x, alpha),
        def_alpha=0.2, def_gain=np.sqrt(2), cuda_idx=3, ref='y',
        has_2nd_grad=False),
    'tanh': SimpleNamespace(func=lambda x, **_: torch.tanh(x), def_alpha=0,
                            def_gain=1, cuda_idx=4, ref='y', has_2nd_grad=True),
    'sigmoid': SimpleNamespace(func=lambda x, **_: torch.sigmoid(x),
                               def_alpha=0, def_gain=1, cuda_idx=5, ref='y',
                               has_2nd_grad=True),
    'elu': SimpleNamespace(func=lambda x, **_: torch.nn.functional.elu(x),
                           def_alpha=0, def_gain=1, cuda_idx=6, ref='y',
                           has_2nd_grad=True),
    'selu': SimpleNamespace(func=lambda x, **_: torch.nn.functional.selu(x),
                            def_alpha=0, def_gain=1, cuda_idx=7, ref='y',
                            has_2nd_grad=True),
    'softplus': SimpleNamespace(
        func=lambda x, **_: torch.nn.functional.softplus(x), def_alpha=0,
        def_gain=1, cuda_idx=8, ref='y', has_2nd_grad=True),
    'swish': SimpleNamespace(func=lambda x, **_: torch.sigmoid(x) * x,
                             def_alpha=0, def_gain=np.sqrt(2), cuda_idx=9,
                             ref='x', has_2nd_grad=True),
}

# ----------------------------------------------------------------------------

_null_tensor = torch.empty([0])


def _bias_act(x, b=None, dim=1, act='linear', alpha=None, gain=None, clamp=None,
              impl='cuda'):
    assert isinstance(x, torch.Tensor)
    assert impl in ['ref', 'cuda']
    if impl == 'cuda' and x.device.type == 'cuda':
        return _bias_act_cuda(dim=dim, act=act, alpha=alpha, gain=gain,
                              clamp=clamp).apply(x, b)
    return _bias_act_ref(x=x, b=b, dim=dim, act=act, alpha=alpha, gain=gain,
                         clamp=clamp)


# ----------------------------------------------------------------------------

def _bias_act_ref(x, b=None, dim=1, act='linear', alpha=None, gain=None, clamp=None):
    assert isinstance(x, torch.Tensor)
    assert clamp is None or clamp >= 0
    spec = activation_funcs[act]
    alpha = float(alpha if alpha is not None else spec.def_alpha)
    gain = float(gain if gain is not None else spec.def_gain)
    clamp = float(clamp if clamp is not None else -1)

    # Add bias.
    if b is not None:
        assert isinstance(b, torch.Tensor) and b.ndim == 1
        assert 0 <= dim < x.ndim
        assert b.shape[0] == x.shape[dim]
        x = x + b.reshape([-1 if i == dim else 1 for i in range(x.ndim)])

    # Evaluate activation function.
    alpha = float(alpha)
    x = spec.func(x, alpha=alpha)

    # Scale by gain.
    gain = float(gain)
    if gain != 1:
        x = x * gain

    # Clamp.
    if clamp >= 0:
        x = x.clamp(-clamp, clamp)  # pylint: disable=invalid-unary-operand-type
    return x


# ----------------------------------------------------------------------------

_bias_act_cuda_cache = dict()


def _bias_act_cuda(dim=1, act='linear', alpha=None, gain=None, clamp=None):
    """Fast CUDA implementation of `bias_act()` using custom ops.
    """
    # Parse arguments.
    assert clamp is None or clamp >= 0
    spec = activation_funcs[act]
    alpha = float(alpha if alpha is not None else spec.def_alpha)
    gain = float(gain if gain is not None else spec.def_gain)
    clamp = float(clamp if clamp is not None else -1)

    # Lookup from cache.
    key = (dim, act, alpha, gain, clamp)
    if key in _bias_act_cuda_cache:
        return _bias_act_cuda_cache[key]

    # Forward op.
    class BiasActCuda(torch.autograd.Function):
        @staticmethod
        def forward(ctx, x, b):  # pylint: disable=arguments-differ
            if x.ndim > 2 and x.stride()[1] == 1:
                ctx.memory_format = torch.channels_last
            else:
                ctx.memory_format = torch.contiguous_format
            x = x.contiguous(memory_format=ctx.memory_format)
            b = b.contiguous() if b is not None else _null_tensor
            y = x
            if act != 'linear' or gain != 1 or clamp >= 0 or b is not \
                    _null_tensor:
                y = bias_act_cuda.bias_act_cuda(x, b, _null_tensor, _null_tensor,
                                                _null_tensor, 0, dim, spec.cuda_idx, alpha,
                                                gain, clamp)
            ctx.save_for_backward(
                x if 'x' in spec.ref or spec.has_2nd_grad else _null_tensor,
                b if 'x' in spec.ref or spec.has_2nd_grad else _null_tensor,
                y if 'y' in spec.ref else _null_tensor)
            return y

        @staticmethod
        def backward(ctx, dy):  # pylint: disable=arguments-differ
            dy = dy.contiguous(memory_format=ctx.memory_format)
            x, b, y = ctx.saved_tensors
            dx = None
            db = None

            if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]:
                dx = dy
                if act != 'linear' or gain != 1 or clamp >= 0:
                    dx = BiasActCudaGrad.apply(dy, x, b, y)

            if ctx.needs_input_grad[1]:
                db = dx.sum([i for i in range(dx.ndim) if i != dim])

            return dx, db

    # Backward op.
    class BiasActCudaGrad(torch.autograd.Function):
        @staticmethod
        def forward(ctx, dy, x, b, y):  # pylint: disable=arguments-differ
            if x.ndim > 2 and x.stride()[1] == 1:
                ctx.memory_format = torch.channels_last
            else:
                ctx.memory_format = torch.contiguous_format
            dx = bias_act_cuda.bias_act_cuda(dy, b, x, y, _null_tensor, 1, dim,
                                             spec.cuda_idx, alpha, gain, clamp)
            ctx.save_for_backward(
                dy if spec.has_2nd_grad else _null_tensor,
                x, b, y)
            return dx

        @staticmethod
        def backward(ctx, d_dx):  # pylint: disable=arguments-differ
            d_dx = d_dx.contiguous(memory_format=ctx.memory_format)
            dy, x, b, y = ctx.saved_tensors
            d_dy = None
            d_x = None
            d_b = None
            d_y = None

            if ctx.needs_input_grad[0]:
                d_dy = BiasActCudaGrad.apply(d_dx, x, b, y)

            if spec.has_2nd_grad and (
                    ctx.needs_input_grad[1] or ctx.needs_input_grad[2]):
                d_x = bias_act_cuda.bias_act_cuda(d_dx, b, x, y, dy, 2, dim, spec.cuda_idx,
                                                  alpha, gain, clamp)

            if spec.has_2nd_grad and ctx.needs_input_grad[2]:
                d_b = d_x.sum([i for i in range(d_x.ndim) if i != dim])

            return d_dy, d_x, d_b, d_y

    # Add to cache.
    _bias_act_cuda_cache[key] = BiasActCuda
    return BiasActCuda


class FusedNonlinearity(nn.Module):
    def __init__(self, nonlinearity, num_channels=None, lr_mul=1.0, alpha=None, impl='cuda', gain=None):
        super().__init__()
        if num_channels is not None:
            self.bias = nn.Parameter(torch.zeros(num_channels))
        else:
            self.register_parameter('bias', None)
        self.nonlinearity = nonlinearity
        self.gain = gain
        self.alpha = alpha
        self.lr_mul = lr_mul
        self.impl = impl

    def forward(self, x):
        bias = self.bias.type_as(x) * self.lr_mul if self.bias is not None else None
        return _bias_act(
            x, b=bias, dim=1, act=self.nonlinearity,
            alpha=self.alpha, gain=self.gain, clamp=None, impl=self.impl
        )

    def __repr__(self):
        mod_str = f'{self.__class__.__name__}(type={self.nonlinearity}'
        if self.gain is not None:
            mod_str += f', gain={self.gain}'
        if self.alpha is not None:
            mod_str += f', alpha={self.alpha}'
        if self.lr_mul != 1:
            mod_str += f', lr_mul={self.lr_mul}'
        mod_str += ')'
        return mod_str