File size: 6,061 Bytes
f670afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#include <ATen/ATen.h>
#include <ATen/Context.h>
#include <ATen/cuda/CUDAContext.h>

#include "channelnorm_kernel.cuh"

#define CUDA_NUM_THREADS 512 

#define DIM0(TENSOR) ((TENSOR).x)
#define DIM1(TENSOR) ((TENSOR).y)
#define DIM2(TENSOR) ((TENSOR).z)
#define DIM3(TENSOR) ((TENSOR).w)

#define DIM3_INDEX(TENSOR, xx, yy, zz, ww) ((TENSOR)[((xx) * (TENSOR##_stride.x)) + ((yy) * (TENSOR##_stride.y)) + ((zz) * (TENSOR##_stride.z)) + ((ww) * (TENSOR##_stride.w))])

using at::Half;

template <typename scalar_t>
__global__ void kernel_channelnorm_update_output(
    const int n, 
    const scalar_t* __restrict__ input1,
    const long4 input1_size,
    const long4 input1_stride,
    scalar_t* __restrict__ output, 
    const long4 output_size,
    const long4 output_stride,
    int norm_deg) {

    int index = blockIdx.x * blockDim.x + threadIdx.x;

    if (index >= n) {
        return;
    }

    int dim_b = DIM0(output_size);
    int dim_c = DIM1(output_size);
    int dim_h = DIM2(output_size);
    int dim_w = DIM3(output_size);
    int dim_chw = dim_c * dim_h * dim_w;

    int b = ( index / dim_chw ) % dim_b;
    int y = ( index / dim_w )   % dim_h;
    int x = ( index          )  % dim_w;

    int i1dim_c = DIM1(input1_size);
    int i1dim_h = DIM2(input1_size);
    int i1dim_w = DIM3(input1_size);
    int i1dim_chw = i1dim_c * i1dim_h * i1dim_w;
    int i1dim_hw  = i1dim_h * i1dim_w;

    float result = 0.0;

    for (int c = 0; c < i1dim_c; ++c) {
        int i1Index = b * i1dim_chw + c * i1dim_hw + y * i1dim_w + x;
        scalar_t val = input1[i1Index];
        result += static_cast<float>(val * val);
    }
    result = sqrt(result);
    output[index] = static_cast<scalar_t>(result);
}


template <typename scalar_t>
__global__ void kernel_channelnorm_backward_input1(
    const int n,
    const scalar_t* __restrict__ input1, const long4 input1_size, const long4 input1_stride,
    const scalar_t* __restrict__ output, const long4 output_size, const long4 output_stride, 
    const scalar_t* __restrict__ gradOutput, const long4 gradOutput_size, const long4 gradOutput_stride,
    scalar_t* __restrict__ gradInput, const long4 gradInput_size, const long4 gradInput_stride, 
    int norm_deg) {

    int index = blockIdx.x * blockDim.x + threadIdx.x;

    if (index >= n) {
        return;
    }

    float val = 0.0;

    int dim_b = DIM0(gradInput_size);
    int dim_c = DIM1(gradInput_size);
    int dim_h = DIM2(gradInput_size);
    int dim_w = DIM3(gradInput_size);
    int dim_chw = dim_c * dim_h * dim_w;
    int dim_hw  = dim_h * dim_w;

    int b = ( index / dim_chw ) % dim_b;
    int y = ( index / dim_w )   % dim_h;
    int x = ( index          )  % dim_w;


    int outIndex = b * dim_hw + y * dim_w + x;
    val = static_cast<float>(gradOutput[outIndex]) * static_cast<float>(input1[index]) / (static_cast<float>(output[outIndex])+1e-9);
    gradInput[index] = static_cast<scalar_t>(val);

}

void channelnorm_kernel_forward(
    at::Tensor& input1, 
    at::Tensor& output, 
    int norm_deg) {

    const long4 input1_size = make_long4(input1.size(0), input1.size(1), input1.size(2), input1.size(3));
    const long4 input1_stride = make_long4(input1.stride(0), input1.stride(1), input1.stride(2), input1.stride(3));

    const long4 output_size = make_long4(output.size(0), output.size(1), output.size(2), output.size(3));
    const long4 output_stride = make_long4(output.stride(0), output.stride(1), output.stride(2), output.stride(3));

    int n = output.numel();

    AT_DISPATCH_FLOATING_TYPES_AND_HALF(input1.type(), "channelnorm_forward", ([&] {

      kernel_channelnorm_update_output<scalar_t><<< (n + CUDA_NUM_THREADS - 1)/CUDA_NUM_THREADS, CUDA_NUM_THREADS, 0, at::cuda::getCurrentCUDAStream() >>>(
//at::globalContext().getCurrentCUDAStream() >>>(
          n,
          input1.data<scalar_t>(), 
          input1_size,
          input1_stride, 
          output.data<scalar_t>(),
          output_size,
          output_stride, 
          norm_deg);

    }));

      // TODO: ATen-equivalent check

     // THCudaCheck(cudaGetLastError());
}

void channelnorm_kernel_backward(
    at::Tensor& input1, 
    at::Tensor& output,
    at::Tensor& gradOutput, 
    at::Tensor& gradInput1, 
    int norm_deg) {

    const long4 input1_size = make_long4(input1.size(0), input1.size(1), input1.size(2), input1.size(3));
    const long4 input1_stride = make_long4(input1.stride(0), input1.stride(1), input1.stride(2), input1.stride(3));

    const long4 output_size = make_long4(output.size(0), output.size(1), output.size(2), output.size(3));
    const long4 output_stride = make_long4(output.stride(0), output.stride(1), output.stride(2), output.stride(3));

    const long4 gradOutput_size = make_long4(gradOutput.size(0), gradOutput.size(1), gradOutput.size(2), gradOutput.size(3));
    const long4 gradOutput_stride = make_long4(gradOutput.stride(0), gradOutput.stride(1), gradOutput.stride(2), gradOutput.stride(3));

    const long4 gradInput1_size = make_long4(gradInput1.size(0), gradInput1.size(1), gradInput1.size(2), gradInput1.size(3));
    const long4 gradInput1_stride = make_long4(gradInput1.stride(0), gradInput1.stride(1), gradInput1.stride(2), gradInput1.stride(3));

    int n = gradInput1.numel();

    AT_DISPATCH_FLOATING_TYPES_AND_HALF(input1.type(), "channelnorm_backward_input1", ([&] {

      kernel_channelnorm_backward_input1<scalar_t><<< (n + CUDA_NUM_THREADS - 1)/CUDA_NUM_THREADS, CUDA_NUM_THREADS, 0, at::cuda::getCurrentCUDAStream() >>>(
//at::globalContext().getCurrentCUDAStream() >>>(
          n, 
          input1.data<scalar_t>(),
          input1_size,
          input1_stride,
          output.data<scalar_t>(),
          output_size,
          output_stride,
          gradOutput.data<scalar_t>(),
          gradOutput_size,
          gradOutput_stride, 
          gradInput1.data<scalar_t>(),
          gradInput1_size,
          gradInput1_stride,
          norm_deg
    );

    }));

    // TODO: Add ATen-equivalent check

//    THCudaCheck(cudaGetLastError());
}