Spaces:
Runtime error
Runtime error
File size: 13,289 Bytes
f670afc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
#include <ATen/ATen.h>
#include <ATen/Context.h>
#include <ATen/cuda/CUDAContext.h>
#define CUDA_NUM_THREADS 512
#define THREADS_PER_BLOCK 64
#define DIM0(TENSOR) ((TENSOR).x)
#define DIM1(TENSOR) ((TENSOR).y)
#define DIM2(TENSOR) ((TENSOR).z)
#define DIM3(TENSOR) ((TENSOR).w)
#define DIM3_INDEX(TENSOR, xx, yy, zz, ww) ((TENSOR)[((xx) * (TENSOR##_stride.x)) + ((yy) * (TENSOR##_stride.y)) + ((zz) * (TENSOR##_stride.z)) + ((ww) * (TENSOR##_stride.w))])
template <typename scalar_t>
__global__ void kernel_resample2d_update_output(const int n,
const scalar_t* __restrict__ input1, const long4 input1_size, const long4 input1_stride,
const scalar_t* __restrict__ input2, const long4 input2_size, const long4 input2_stride,
scalar_t* __restrict__ output,
const long4 output_size, const
long4 output_stride, int
kernel_size/*, bool bilinear*/) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
bool bilinear = true;
if (index >= n) {
return;
}
scalar_t val = 0.0f;
int dim_b = DIM0(output_size);
int dim_c = DIM1(output_size);
int dim_h = DIM2(output_size);
int dim_w = DIM3(output_size);
int dim_chw = dim_c * dim_h * dim_w;
int dim_hw = dim_h * dim_w;
int b = ( index / dim_chw ) % dim_b;
int c = ( index / dim_hw ) % dim_c;
int y = ( index / dim_w ) % dim_h;
int x = ( index ) % dim_w;
scalar_t dx = DIM3_INDEX(input2, b, 0, y, x);
scalar_t dy = DIM3_INDEX(input2, b, 1, y, x);
scalar_t xf = static_cast<scalar_t>(x) + dx;
scalar_t yf = static_cast<scalar_t>(y) + dy;
scalar_t alpha = xf - floor(xf); // alpha
scalar_t beta = yf - floor(yf); // beta
if (bilinear) {
int xL = max(min( int (floor(xf)), dim_w-1), 0);
int xR = max(min( int (floor(xf)+1), dim_w -1), 0);
int yT = max(min( int (floor(yf)), dim_h-1), 0);
int yB = max(min( int (floor(yf)+1), dim_h-1), 0);
for (int fy = 0; fy < kernel_size; fy += 1) {
for (int fx = 0; fx < kernel_size; fx += 1) {
val += static_cast<float>((1. - alpha)*(1. - beta) * DIM3_INDEX(input1, b, c, yT + fy, xL + fx));
val += static_cast<float>((alpha)*(1. - beta) * DIM3_INDEX(input1, b, c, yT + fy, xR + fx));
val += static_cast<float>((1. - alpha)*(beta) * DIM3_INDEX(input1, b, c, yB + fy, xL + fx));
val += static_cast<float>((alpha)*(beta) * DIM3_INDEX(input1, b, c, yB + fy, xR + fx));
}
}
output[index] = val;
}
else {
int xN = max(min( int (floor(xf + 0.5)), dim_w - 1), 0);
int yN = max(min( int (floor(yf + 0.5)), dim_h - 1), 0);
output[index] = static_cast<float> ( DIM3_INDEX(input1, b, c, yN, xN) );
}
}
template <typename scalar_t>
__global__ void kernel_resample2d_backward_input1(
const int n, const scalar_t* __restrict__ input1, const long4 input1_size, const long4 input1_stride,
const scalar_t* __restrict__ input2, const long4 input2_size, const long4 input2_stride,
const scalar_t* __restrict__ gradOutput, const long4 gradOutput_size, const long4 gradOutput_stride,
scalar_t* __restrict__ gradInput, const long4 gradInput_size, const long4
gradInput_stride, int kernel_size/*, bool bilinear*/) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
bool bilinear = true;
if (index >= n) {
return;
}
int dim_b = DIM0(gradOutput_size);
int dim_c = DIM1(gradOutput_size);
int dim_h = DIM2(gradOutput_size);
int dim_w = DIM3(gradOutput_size);
int dim_chw = dim_c * dim_h * dim_w;
int dim_hw = dim_h * dim_w;
int b = ( index / dim_chw ) % dim_b;
int c = ( index / dim_hw ) % dim_c;
int y = ( index / dim_w ) % dim_h;
int x = ( index ) % dim_w;
scalar_t dx = DIM3_INDEX(input2, b, 0, y, x);
scalar_t dy = DIM3_INDEX(input2, b, 1, y, x);
scalar_t xf = static_cast<scalar_t>(x) + dx;
scalar_t yf = static_cast<scalar_t>(y) + dy;
scalar_t alpha = xf - int(xf); // alpha
scalar_t beta = yf - int(yf); // beta
int idim_h = DIM2(input1_size);
int idim_w = DIM3(input1_size);
int xL = max(min( int (floor(xf)), idim_w-1), 0);
int xR = max(min( int (floor(xf)+1), idim_w -1), 0);
int yT = max(min( int (floor(yf)), idim_h-1), 0);
int yB = max(min( int (floor(yf)+1), idim_h-1), 0);
for (int fy = 0; fy < kernel_size; fy += 1) {
for (int fx = 0; fx < kernel_size; fx += 1) {
atomicAdd(&DIM3_INDEX(gradInput, b, c, (yT + fy), (xL + fx)), (1-alpha)*(1-beta) * DIM3_INDEX(gradOutput, b, c, y, x));
atomicAdd(&DIM3_INDEX(gradInput, b, c, (yT + fy), (xR + fx)), (alpha)*(1-beta) * DIM3_INDEX(gradOutput, b, c, y, x));
atomicAdd(&DIM3_INDEX(gradInput, b, c, (yB + fy), (xL + fx)), (1-alpha)*(beta) * DIM3_INDEX(gradOutput, b, c, y, x));
atomicAdd(&DIM3_INDEX(gradInput, b, c, (yB + fy), (xR + fx)), (alpha)*(beta) * DIM3_INDEX(gradOutput, b, c, y, x));
}
}
}
template <typename scalar_t>
__global__ void kernel_resample2d_backward_input2(
const int n, const scalar_t* __restrict__ input1, const long4 input1_size, const long4 input1_stride,
const scalar_t* __restrict__ input2, const long4 input2_size, const long4 input2_stride,
const scalar_t* __restrict__ gradOutput, const long4 gradOutput_size, const long4 gradOutput_stride,
scalar_t* __restrict__ gradInput, const long4 gradInput_size, const long4
gradInput_stride, int kernel_size/*, bool bilinear*/) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
bool bilinear = true;
if (index >= n) {
return;
}
scalar_t output = 0.0;
int kernel_rad = (kernel_size - 1)/2;
int dim_b = DIM0(gradInput_size);
int dim_c = DIM1(gradInput_size);
int dim_h = DIM2(gradInput_size);
int dim_w = DIM3(gradInput_size);
int dim_chw = dim_c * dim_h * dim_w;
int dim_hw = dim_h * dim_w;
int b = ( index / dim_chw ) % dim_b;
int c = ( index / dim_hw ) % dim_c;
int y = ( index / dim_w ) % dim_h;
int x = ( index ) % dim_w;
int odim_c = DIM1(gradOutput_size);
scalar_t dx = DIM3_INDEX(input2, b, 0, y, x);
scalar_t dy = DIM3_INDEX(input2, b, 1, y, x);
scalar_t xf = static_cast<scalar_t>(x) + dx;
scalar_t yf = static_cast<scalar_t>(y) + dy;
int xL = max(min( int (floor(xf)), dim_w-1), 0);
int xR = max(min( int (floor(xf)+1), dim_w -1), 0);
int yT = max(min( int (floor(yf)), dim_h-1), 0);
int yB = max(min( int (floor(yf)+1), dim_h-1), 0);
if (c % 2) {
float gamma = 1 - (xf - floor(xf)); // alpha
for (int i = 0; i <= 2*kernel_rad; ++i) {
for (int j = 0; j <= 2*kernel_rad; ++j) {
for (int ch = 0; ch < odim_c; ++ch) {
output += (gamma) * DIM3_INDEX(gradOutput, b, ch, y, x) * DIM3_INDEX(input1, b, ch, (yB + j), (xL + i));
output -= (gamma) * DIM3_INDEX(gradOutput, b, ch, y, x) * DIM3_INDEX(input1, b, ch, (yT + j), (xL + i));
output += (1-gamma) * DIM3_INDEX(gradOutput, b, ch, y, x) * DIM3_INDEX(input1, b, ch, (yB + j), (xR + i));
output -= (1-gamma) * DIM3_INDEX(gradOutput, b, ch, y, x) * DIM3_INDEX(input1, b, ch, (yT + j), (xR + i));
}
}
}
}
else {
float gamma = 1 - (yf - floor(yf)); // alpha
for (int i = 0; i <= 2*kernel_rad; ++i) {
for (int j = 0; j <= 2*kernel_rad; ++j) {
for (int ch = 0; ch < odim_c; ++ch) {
output += (gamma) * DIM3_INDEX(gradOutput, b, ch, y, x) * DIM3_INDEX(input1, b, ch, (yT + j), (xR + i));
output -= (gamma) * DIM3_INDEX(gradOutput, b, ch, y, x) * DIM3_INDEX(input1, b, ch, (yT + j), (xL + i));
output += (1-gamma) * DIM3_INDEX(gradOutput, b, ch, y, x) * DIM3_INDEX(input1, b, ch, (yB + j), (xR + i));
output -= (1-gamma) * DIM3_INDEX(gradOutput, b, ch, y, x) * DIM3_INDEX(input1, b, ch, (yB + j), (xL + i));
}
}
}
}
gradInput[index] = output;
}
void resample2d_kernel_forward(
at::Tensor& input1,
at::Tensor& input2,
at::Tensor& output,
int kernel_size/*,
bool bilinear*/) {
int n = output.numel();
const long4 input1_size = make_long4(input1.size(0), input1.size(1), input1.size(2), input1.size(3));
const long4 input1_stride = make_long4(input1.stride(0), input1.stride(1), input1.stride(2), input1.stride(3));
const long4 input2_size = make_long4(input2.size(0), input2.size(1), input2.size(2), input2.size(3));
const long4 input2_stride = make_long4(input2.stride(0), input2.stride(1), input2.stride(2), input2.stride(3));
const long4 output_size = make_long4(output.size(0), output.size(1), output.size(2), output.size(3));
const long4 output_stride = make_long4(output.stride(0), output.stride(1), output.stride(2), output.stride(3));
// TODO: when atomicAdd gets resolved, change to AT_DISPATCH_FLOATING_TYPES_AND_HALF
// AT_DISPATCH_FLOATING_TYPES(input1.type(), "resample_forward_kernel", ([&] {
kernel_resample2d_update_output<float><<< (n + CUDA_NUM_THREADS - 1)/CUDA_NUM_THREADS, CUDA_NUM_THREADS, 0, at::cuda::getCurrentCUDAStream() >>>(
//at::globalContext().getCurrentCUDAStream() >>>(
n,
input1.data<float>(),
input1_size,
input1_stride,
input2.data<float>(),
input2_size,
input2_stride,
output.data<float>(),
output_size,
output_stride,
kernel_size/*,
bilinear*/);
// }));
// TODO: ATen-equivalent check
// THCudaCheck(cudaGetLastError());
}
void resample2d_kernel_backward(
at::Tensor& input1,
at::Tensor& input2,
at::Tensor& gradOutput,
at::Tensor& gradInput1,
at::Tensor& gradInput2,
int kernel_size/*,
bool bilinear*/) {
int n = gradOutput.numel();
const long4 input1_size = make_long4(input1.size(0), input1.size(1), input1.size(2), input1.size(3));
const long4 input1_stride = make_long4(input1.stride(0), input1.stride(1), input1.stride(2), input1.stride(3));
const long4 input2_size = make_long4(input2.size(0), input2.size(1), input2.size(2), input2.size(3));
const long4 input2_stride = make_long4(input2.stride(0), input2.stride(1), input2.stride(2), input2.stride(3));
const long4 gradOutput_size = make_long4(gradOutput.size(0), gradOutput.size(1), gradOutput.size(2), gradOutput.size(3));
const long4 gradOutput_stride = make_long4(gradOutput.stride(0), gradOutput.stride(1), gradOutput.stride(2), gradOutput.stride(3));
const long4 gradInput1_size = make_long4(gradInput1.size(0), gradInput1.size(1), gradInput1.size(2), gradInput1.size(3));
const long4 gradInput1_stride = make_long4(gradInput1.stride(0), gradInput1.stride(1), gradInput1.stride(2), gradInput1.stride(3));
// AT_DISPATCH_FLOATING_TYPES(input1.type(), "resample_backward_input1", ([&] {
kernel_resample2d_backward_input1<float><<< (n + CUDA_NUM_THREADS - 1)/CUDA_NUM_THREADS, CUDA_NUM_THREADS, 0, at::cuda::getCurrentCUDAStream() >>>(
//at::globalContext().getCurrentCUDAStream() >>>(
n,
input1.data<float>(),
input1_size,
input1_stride,
input2.data<float>(),
input2_size,
input2_stride,
gradOutput.data<float>(),
gradOutput_size,
gradOutput_stride,
gradInput1.data<float>(),
gradInput1_size,
gradInput1_stride,
kernel_size/*,
bilinear*/
);
// }));
const long4 gradInput2_size = make_long4(gradInput2.size(0), gradInput2.size(1), gradInput2.size(2), gradInput2.size(3));
const long4 gradInput2_stride = make_long4(gradInput2.stride(0), gradInput2.stride(1), gradInput2.stride(2), gradInput2.stride(3));
n = gradInput2.numel();
// AT_DISPATCH_FLOATING_TYPES(gradInput2.type(), "resample_backward_input2", ([&] {
kernel_resample2d_backward_input2<float><<< (n + CUDA_NUM_THREADS - 1)/CUDA_NUM_THREADS, CUDA_NUM_THREADS, 0, at::cuda::getCurrentCUDAStream() >>>(
//at::globalContext().getCurrentCUDAStream() >>>(
n,
input1.data<float>(),
input1_size,
input1_stride,
input2.data<float>(),
input2_size,
input2_stride,
gradOutput.data<float>(),
gradOutput_size,
gradOutput_stride,
gradInput2.data<float>(),
gradInput2_size,
gradInput2_stride,
kernel_size/*,
bilinear*/
);
// }));
// TODO: Use the ATen equivalent to get last error
// THCudaCheck(cudaGetLastError());
}
|