File size: 12,922 Bytes
f670afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import numpy as np
import torch,math
from PIL import Image
import torchvision
from easydict import EasyDict as edict

def position_produce(opt): 
    depth_channel =  opt.arch.gen.depth_arch.output_nc 
    if  opt.optim.ground_prior:
        depth_channel = depth_channel+1
    z_ = torch.arange(depth_channel)/depth_channel
    x_ = torch.arange(opt.data.sat_size[1])/opt.data.sat_size[1]
    y_ = torch.arange(opt.data.sat_size[0])/opt.data.sat_size[0]
    Z,X,Y = torch.meshgrid(z_,x_,y_)
    input = torch.cat((Z[...,None],X[...,None],Y[...,None]),dim=-1).to(opt.device)
    pos = positional_encoding(opt,input)
    pos = pos.permute(3,0,1,2)
    return  pos

def positional_encoding(opt,input): # [B,...,N]
    shape = input.shape
    freq = 2**torch.arange(opt.arch.gen.PE_channel,dtype=torch.float32,device=opt.device)*np.pi # [L]
    spectrum = input[...,None]*freq # [B,...,N,L]
    sin,cos = spectrum.sin(),spectrum.cos() # [B,...,N,L]
    input_enc = torch.stack([sin,cos],dim=-2) # [B,...,N,2,L]
    input_enc = input_enc.view(*shape[:-1],-1) # [B,...,2NL]
    return input_enc



def get_original_coord(opt):
    '''
    pano_direction [X,Y,Z] x right,y up,z out
    '''
    W,H  = opt.data.pano_size
    _y = np.repeat(np.array(range(W)).reshape(1,W), H, axis=0)
    _x = np.repeat(np.array(range(H)).reshape(1,H), W, axis=0).T

    if opt.data.dataset in ['CVACT_Shi', 'CVACT', 'CVACThalf']:
        _theta = (1 - 2 * (_x) / H) * np.pi/2 # latitude 
    elif opt.data.dataset in ['CVUSA']:
        _theta = (1 - 2 * (_x) / H) * np.pi/4
    # _phi = math.pi* ( 1 -2* (_y)/W ) # longtitude 
    _phi = math.pi*( - 0.5 - 2* (_y)/W )
    axis0 = (np.cos(_theta)*np.cos(_phi)).reshape(H, W, 1)
    axis1 = np.sin(_theta).reshape(H, W, 1) 
    axis2 = (-np.cos(_theta)*np.sin(_phi)).reshape(H, W, 1) 
    pano_direction = np.concatenate((axis0, axis1, axis2), axis=2)
    return pano_direction  


def render(opt,feature,voxel,pano_direction,PE=None):
    '''
    render ground images from ssatellite images
    
    feature: B,C,H_sat,W_sat feature or a input RGB
    voxel: B,N,H_sat,W_sat density of each grid
    PE: whether add position encoding , default is None
    pano_direction: pano ray direction  by their definition
    '''
    # pano_W,pano_H = opt.data.pano_size
    sat_W,sat_H = opt.data.sat_size
    BS = feature.size(0)
    ##### get origin, sample point ,depth

    if opt.data.dataset =='CVACT_Shi':
        origin_height=2       ## the height of photo taken in real world scale
        realworld_scale = 30  ## the real world scale corresponding to [-1,1] regular cooridinate
    elif opt.data.dataset == 'CVUSA':
        origin_height=2       
        realworld_scale = 55  
    else:
        assert Exception('Not implement yet')

    assert sat_W==sat_H
    pixel_resolution = realworld_scale/sat_W #### pixel resolution of satellite image in realworld

    if opt.data.sample_total_length:
        sample_total_length = opt.data.sample_total_length
    else: sample_total_length = (int(max(np.sqrt((realworld_scale/2)**2+(realworld_scale/2)**2+(2)**2), \
        np.sqrt((realworld_scale/2)**2+(realworld_scale/2)**2+(opt.data.max_height-origin_height)**2))/pixel_resolution))/(sat_W/2)

    origin_z = torch.ones([BS,1])*(-1+(origin_height/(realworld_scale/2))) ### -1 is the loweast position in regular cooridinate
    ##### origin_z: which can be definition by origin height
    if opt.origin_H_W is None: ### origin_H_W is the photo taken space in regular coordinate
        origin_H,origin_w = torch.zeros([BS,1]),torch.zeros([BS,1])   
    else:
        origin_H,origin_w = torch.ones([BS,1])*opt.origin_H_W[0],torch.ones([BS,1])*opt.origin_H_W[1]
    origin = torch.cat([origin_w,origin_z,origin_H],dim=1).to(opt.device)[:,None,None,:]  ## w,z,h, samiliar to NERF coordinate definition
    sample_len = ((torch.arange(opt.data.sample_number)+1)*(sample_total_length/opt.data.sample_number)).to(opt.device)
    ### sample_len:  For sample distance is fixed, so we can easily calculate sample len along a way by max length and sample number
    origin = origin[...,None]
    pano_direction = pano_direction[...,None] ### the direction has been normalized
    depth = sample_len[None,None,None,None,:]
    sample_point = origin + pano_direction * depth #0.0000],-0.8667],0.0000 w,z,h
    # x points right, y points up, z points backwards scene nerf
    # ray_depth = sample_point-origin

    if opt.optim.ground_prior:
        voxel = torch.cat([torch.ones(voxel.size(0),1,voxel.size(2),voxel.size(3),device=opt.device)*1000,voxel],1)

            # voxel[:,0,:,:] = 100
    N = voxel.size(1)
    voxel_low = -1
    voxel_max = -1 + opt.data.max_height/(realworld_scale/2)  ### voxel highest space in normal space
    grid = sample_point.permute(0,4,1,2,3)[...,[0,2,1]] ### BS,NUM_point,W,H,3 
    grid[...,2]   = ((grid[...,2]-voxel_low)/(voxel_max-voxel_low))*2-1  ### grid_space change to sample space by scale the z space
    grid = grid.float()  ## [1, 300, 256, 512, 3]
    
    color_input = feature.unsqueeze(2).repeat(1, 1, N, 1, 1)
    alpha_grid = torch.nn.functional.grid_sample(voxel.unsqueeze(1), grid)

    color_grid = torch.nn.functional.grid_sample(color_input, grid)
    if PE is not None:
        PE_grid = torch.nn.functional.grid_sample(PE[None,...], grid[:1,...])
        color_grid = torch.cat([color_grid,PE_grid.repeat(BS, 1, 1, 1, 1)],dim=1)

    depth_sample = depth.permute(0,1,2,4,3).view(1,-1,opt.data.sample_number,1)
    feature_size = color_grid.size(1)
    color_grid = color_grid.permute(0,3,4,2,1).view(BS,-1,opt.data.sample_number,feature_size)
    alpha_grid = alpha_grid.permute(0,3,4,2,1).view(BS,-1,opt.data.sample_number)
    intv = sample_total_length/opt.data.sample_number
    output = composite(opt, rgb_samples=color_grid,density_samples=alpha_grid,depth_samples=depth_sample,intv = intv)
    output['voxel']  = voxel
    return output

def composite(opt,rgb_samples,density_samples,depth_samples,intv):
    """generate 2d ground images according to ray

    Args:
        opt (_type_): option dict
        rgb_samples (_type_): rgb (sampled from satellite image) belongs to the ray which start from the ground camera to world
        density_samples (_type_): density (sampled from the predicted voxel of satellite image) belongs to the ray which start from the ground camera to world
        depth_samples (_type_): depth of the ray which start from the ground camera to world
        intv (_type_): interval of the ray's depth which start from the ground camera to world

    Returns:
        2d ground images (rgd, opacity, and depth)
    """    
    
    sigma_delta = density_samples*intv # [B,HW,N]
    alpha = 1-(-sigma_delta).exp_() # [B,HW,N]
    T = (-torch.cat([torch.zeros_like(sigma_delta[...,:1]),sigma_delta[...,:-1]],dim=2).cumsum(dim=2)) .exp_() # [B,HW,N]
    prob = (T*alpha)[...,None] # [B,HW,N,1]
    # integrate RGB and depth weighted by probability
    depth = (depth_samples*prob).sum(dim=2) # [B,HW,1]
    rgb = (rgb_samples*prob).sum(dim=2) # [B,HW,3]
    opacity = prob.sum(dim=2) # [B,HW,1]
    depth = depth.permute(0,2,1).view(depth.size(0),-1,opt.data.pano_size[1],opt.data.pano_size[0])
    rgb = rgb.permute(0,2,1).view(rgb.size(0),-1,opt.data.pano_size[1],opt.data.pano_size[0])
    opacity = opacity.view(opacity.size(0),1,opt.data.pano_size[1],opt.data.pano_size[0])
    return {'rgb':rgb,'opacity':opacity,'depth':depth}


def get_sat_ori(opt):
    W,H  = opt.data.sat_size
    y_range =  (torch.arange(H,dtype=torch.float32,)+0.5)/(0.5*H)-1
    x_range = (torch.arange(W,dtype=torch.float32,)+0.5)/(0.5*H)-1
    Y,X = torch.meshgrid(y_range,x_range)
    Z = torch.ones_like(Y)
    xy_grid = torch.stack([X,Z,Y],dim=-1)[None,:,:]
    return xy_grid

def render_sat(opt,voxel):
    '''
    voxel: voxel has been processed
    '''
    # pano_W,pano_H = opt.data.pano_size
    sat_W,sat_H = opt.data.sat_size
    sat_ori  = get_sat_ori(opt)
    sat_dir  = torch.tensor([0,-1,0])[None,None,None,:]

    ##### get origin, sample point ,depth
    if opt.data.dataset =='CVACT_Shi':
        origin_height=2      
        realworld_scale = 30  
    elif opt.data.dataset == 'CVUSA':
        origin_height=2       
        realworld_scale = 55  

    else:
        assert Exception('Not implement yet')

    pixel_resolution = realworld_scale/sat_W #### pixel resolution of satellite image in realworld
    # if opt.data.sample_total_length:
    #     sample_total_length = opt.data.sample_total_length
    # else: sample_total_length = (int(max(np.sqrt((realworld_scale/2)**2+(realworld_scale/2)**2+(2)**2), \
    #     np.sqrt((realworld_scale/2)**2+(realworld_scale/2)**2+(opt.data.max_height-origin_height)**2))/pixel_resolution))/(sat_W/2)
    sample_total_length = 2
    # #### sample_total_length: it can be definition in future, which is the farest length between sample point and original ponit 
    # assert sat_W==sat_H

    origin = sat_ori.to(opt.device)  ## w,z,h, samiliar to NERF coordinate definition
    sample_len = ((torch.arange(opt.data.sample_number)+1)*(sample_total_length/opt.data.sample_number)).to(opt.device)
    ### sample_len:  For sample distance is fixed, so we can easily calculate sample len along a way by max length and sample number
    origin = origin[...,None].to(opt.device)
    direction = sat_dir[...,None].to(opt.device) ### the direction has been normalized
    depth = sample_len[None,None,None,None,:]
    sample_point = origin + direction * depth #0.0000],-0.8667],0.0000 w,z,h


    N = voxel.size(1)
    voxel_low = -1
    voxel_max = -1 + opt.data.max_height/(realworld_scale/2)  ### voxel highest space in normal space
    # axis_voxel = (torch.arange(N)/N) * (voxel_max-voxel_low) +voxel_low
    grid = sample_point.permute(0,4,1,2,3)[...,[0,2,1]] ### BS,NUM_point,W,H,3 
    grid[...,2]   = ((grid[...,2]-voxel_low)/(voxel_max-voxel_low))*2-1  ### grid_space change to sample space by scale the z space
    grid = grid.float()  ## [1, 300, 256, 512, 3]
    alpha_grid = torch.nn.functional.grid_sample(voxel.unsqueeze(1), grid)

    depth_sample = depth.permute(0,1,2,4,3).view(1,-1,opt.data.sample_number,1)
    alpha_grid = alpha_grid.permute(0,3,4,2,1).view(opt.batch_size,-1,opt.data.sample_number)
    # color_grid = torch.flip(color_grid,[2])
    # alpha_grid = torch.flip(alpha_grid,[2])
    intv = sample_total_length/opt.data.sample_number
    output = composite_sat(opt,density_samples=alpha_grid,depth_samples=depth_sample,intv = intv)
    return output['opacity'],output['depth']

def composite_sat(opt,density_samples,depth_samples,intv):
    sigma_delta = density_samples*intv # [B,HW,N]
    alpha = 1-(-sigma_delta).exp_() # [B,HW,N]
    T = (-torch.cat([torch.zeros_like(sigma_delta[...,:1]),sigma_delta[...,:-1]],dim=2).cumsum(dim=2)) .exp_() # [B,HW,N]
    prob = (T*alpha)[...,None] # [B,HW,N,1]
    depth = (depth_samples*prob).sum(dim=2) # [B,HW,1]
    opacity = prob.sum(dim=2) # [B,HW,1]
    depth = depth.permute(0,2,1).view(depth.size(0),-1,opt.data.sat_size[1],opt.data.sat_size[0])
    opacity = opacity.view(opacity.size(0),1,opt.data.sat_size[1],opt.data.sat_size[0])
    # return rgb,depth,opacity,prob # [B,HW,K]
    return {'opacity':opacity,'depth':depth}

if __name__ == '__main__':
    # test_demo
    opt=edict()
    opt.device = 'cuda'
    opt.data = edict()
    opt.data.pano_size = [512,256]
    opt.data.sat_size = [256,256]
    opt.data.dataset = 'CVACT_Shi'
    opt.data.max_height = 20
    opt.data.sample_number = 300
    opt.arch = edict()
    opt.optim = edict()
    opt.optim.ground_prior = False
    opt.arch.gen.transform_mode = 'volum_rendering'
    # opt.arch.gen.transform_mode = 'proj_like_radus'
    BS = 1
    opt.data.sample_total_length = 1
    sat_name = './CVACT/satview_correct/__-DFIFxvZBCn1873qkqXA_satView_polish.png'
    a = Image.open(sat_name)
    a = np.array(a).astype(np.float32)
    a = torch.from_numpy(a)
    a = a.permute(2, 0, 1).unsqueeze(0).to(opt.device).repeat(BS,1,1,1)/255.


    pano = sat_name.replace('satview_correct','streetview').replace('_satView_polish','_grdView')
    pano = np.array(Image.open(pano)).astype(np.float32)
    pano = torch.from_numpy(pano)
    pano = pano.permute(2, 0, 1).unsqueeze(0).to(opt.device).repeat(BS,1,1,1)/255.
    voxel=torch.zeros([BS, 65, 256, 256]).to(opt.device)
    pano_direction = torch.from_numpy(get_original_coord(opt)).unsqueeze(0).to(opt.device)

    import time
    star = time.time()
    with torch.autograd.profiler.profile(enabled=True, use_cuda=True, record_shapes=False, profile_memory=False) as prof:
        rgb,opacity =render(opt,a,voxel,pano_direction)
    print(prof.table())
      
    print(time.time()-star) 

    torchvision.utils.save_image(torch.cat([rgb,pano],2), opt.arch.gen.transform_mode + '.png')
    print( opt.arch.gen.transform_mode + '.png')
    torchvision.utils.save_image(opacity, 'opa.png')