Spaces:
Runtime error
Runtime error
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# This work is made available under the Nvidia Source Code License-NC. | |
# To view a copy of this license, check out LICENSE.md | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
class AffineMod(nn.Module): | |
r"""Learning affine modulation of activation. | |
Args: | |
in_features (int): Number of input features. | |
style_features (int): Number of style features. | |
mod_bias (bool): Whether to modulate bias. | |
""" | |
def __init__(self, | |
in_features, | |
style_features, | |
mod_bias=True | |
): | |
super().__init__() | |
self.weight_alpha = nn.Parameter(torch.randn([in_features, style_features]) / np.sqrt(style_features)) | |
self.bias_alpha = nn.Parameter(torch.full([in_features], 1, dtype=torch.float)) # init to 1 | |
self.weight_beta = None | |
self.bias_beta = None | |
self.mod_bias = mod_bias | |
if mod_bias: | |
self.weight_beta = nn.Parameter(torch.randn([in_features, style_features]) / np.sqrt(style_features)) | |
self.bias_beta = nn.Parameter(torch.full([in_features], 0, dtype=torch.float)) | |
def _linear_f(x, w, b): | |
w = w.to(x.dtype) | |
x_shape = x.shape | |
x = x.reshape(-1, x_shape[-1]) | |
if b is not None: | |
b = b.to(x.dtype) | |
x = torch.addmm(b.unsqueeze(0), x, w.t()) | |
else: | |
x = x.matmul(w.t()) | |
x = x.reshape(*x_shape[:-1], -1) | |
return x | |
# x: B, ... , Cin | |
# z: B, 1, 1, , Cz | |
def forward(self, x, z): | |
x_shape = x.shape | |
z_shape = z.shape | |
x = x.reshape(x_shape[0], -1, x_shape[-1]) | |
z = z.reshape(z_shape[0], 1, z_shape[-1]) | |
alpha = self._linear_f(z, self.weight_alpha, self.bias_alpha) # [B, ..., I] | |
x = x * alpha | |
if self.mod_bias: | |
beta = self._linear_f(z, self.weight_beta, self.bias_beta) # [B, ..., I] | |
x = x + beta | |
x = x.reshape(*x_shape[:-1], x.shape[-1]) | |
return x | |
class ModLinear(nn.Module): | |
r"""Linear layer with affine modulation (Based on StyleGAN2 mod demod). | |
Equivalent to affine modulation following linear, but faster when the same modulation parameters are shared across | |
multiple inputs. | |
Args: | |
in_features (int): Number of input features. | |
out_features (int): Number of output features. | |
style_features (int): Number of style features. | |
bias (bool): Apply additive bias before the activation function? | |
mod_bias (bool): Whether to modulate bias. | |
output_mode (bool): If True, modulate output instead of input. | |
weight_gain (float): Initialization gain | |
""" | |
def __init__(self, | |
in_features, | |
out_features, | |
style_features, | |
bias=True, | |
mod_bias=True, | |
output_mode=False, | |
weight_gain=1, | |
bias_init=0 | |
): | |
super().__init__() | |
weight_gain = weight_gain / np.sqrt(in_features) | |
self.weight = nn.Parameter(torch.randn([out_features, in_features]) * weight_gain) | |
self.bias = nn.Parameter(torch.full([out_features], np.float32(bias_init))) if bias else None | |
self.weight_alpha = nn.Parameter(torch.randn([in_features, style_features]) / np.sqrt(style_features)) | |
self.bias_alpha = nn.Parameter(torch.full([in_features], 1, dtype=torch.float)) # init to 1 | |
self.weight_beta = None | |
self.bias_beta = None | |
self.mod_bias = mod_bias | |
self.output_mode = output_mode | |
if mod_bias: | |
if output_mode: | |
mod_bias_dims = out_features | |
else: | |
mod_bias_dims = in_features | |
self.weight_beta = nn.Parameter(torch.randn([mod_bias_dims, style_features]) / np.sqrt(style_features)) | |
self.bias_beta = nn.Parameter(torch.full([mod_bias_dims], 0, dtype=torch.float)) | |
def _linear_f(x, w, b): | |
w = w.to(x.dtype) | |
x_shape = x.shape | |
x = x.reshape(-1, x_shape[-1]) | |
if b is not None: | |
b = b.to(x.dtype) | |
x = torch.addmm(b.unsqueeze(0), x, w.t()) | |
else: | |
x = x.matmul(w.t()) | |
x = x.reshape(*x_shape[:-1], -1) | |
return x | |
# x: B, ... , Cin | |
# z: B, 1, 1, , Cz | |
def forward(self, x, z): | |
x_shape = x.shape | |
z_shape = z.shape | |
x = x.reshape(x_shape[0], -1, x_shape[-1]) | |
z = z.reshape(z_shape[0], 1, z_shape[-1]) | |
alpha = self._linear_f(z, self.weight_alpha, self.bias_alpha) # [B, ..., I] | |
w = self.weight.to(x.dtype) # [O I] | |
w = w.unsqueeze(0) * alpha # [1 O I] * [B 1 I] = [B O I] | |
if self.mod_bias: | |
beta = self._linear_f(z, self.weight_beta, self.bias_beta) # [B, ..., I] | |
if not self.output_mode: | |
x = x + beta | |
b = self.bias | |
if b is not None: | |
b = b.to(x.dtype)[None, None, :] | |
if self.mod_bias and self.output_mode: | |
if b is None: | |
b = beta | |
else: | |
b = b + beta | |
# [B ? I] @ [B I O] = [B ? O] | |
if b is not None: | |
x = torch.baddbmm(b, x, w.transpose(1, 2)) | |
else: | |
x = x.bmm(w.transpose(1, 2)) | |
x = x.reshape(*x_shape[:-1], x.shape[-1]) | |
return x | |