venkyvicky commited on
Commit
0f78c57
ยท
verified ยท
1 Parent(s): 2c3807a

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +612 -0
app.py ADDED
@@ -0,0 +1,612 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torchvision
3
+ from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
4
+ from transformers import DetrImageProcessor, DetrForObjectDetection
5
+ from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
6
+ from PIL import Image
7
+ import numpy as np
8
+ import matplotlib.pyplot as plt
9
+ import matplotlib.patches as patches
10
+ import gradio as gr
11
+ import os
12
+ import io
13
+ import uuid
14
+
15
+ # Load Faster R-CNN model with proper weight assignment
16
+ frcnn_weights = FasterRCNN_ResNet50_FPN_Weights.DEFAULT
17
+ frcnn_model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights=None, progress=True)
18
+ state_dict = torch.hub.load_state_dict_from_url(frcnn_weights.url, progress=True, map_location=torch.device('cpu'))
19
+ frcnn_model.load_state_dict(state_dict, strict=False)
20
+ frcnn_model.eval()
21
+
22
+ # Load DETR model and processor
23
+ detr_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
24
+ detr_model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
25
+
26
+ # Load Mask R-CNN model
27
+ maskrcnn_model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True)
28
+ maskrcnn_model.eval()
29
+
30
+ # Load Mask2Former model and processor
31
+ mask2former_processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-small-coco-instance")
32
+ mask2former_model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-small-coco-instance")
33
+ mask2former_model.eval()
34
+
35
+ # COCO class names for Faster R-CNN and Mask R-CNN
36
+ COCO_INSTANCE_CATEGORY_NAMES = [
37
+ '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
38
+ 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
39
+ 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
40
+ 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
41
+ 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
42
+ 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
43
+ 'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
44
+ 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
45
+ 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
46
+ 'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
47
+ 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
48
+ 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
49
+ ]
50
+
51
+ # Mask2Former label map
52
+ MASK2FORMER_COCO_NAMES = mask2former_model.config.id2label if hasattr(mask2former_model.config, "id2label") else {str(i): str(i) for i in range(133)}
53
+
54
+ def detect_objects_frcnn(image, threshold=0.5):
55
+ """Run Faster R-CNN detection."""
56
+ if image is None:
57
+ blank_img = Image.new('RGB', (400, 400), color='white')
58
+ plt.figure(figsize=(10, 10))
59
+ plt.imshow(blank_img)
60
+ plt.text(0.5, 0.5, "No image provided", horizontalalignment='center', verticalalignment='center',
61
+ transform=plt.gca().transAxes, fontsize=20)
62
+ plt.axis('off')
63
+ output_path = f"frcnn_blank_output_{uuid.uuid4()}.png"
64
+ plt.savefig(output_path)
65
+ plt.close()
66
+ return output_path, 0
67
+
68
+ try:
69
+ threshold = float(threshold) if threshold is not None else 0.5
70
+ image = image.convert('RGB')
71
+ img_array = np.array(image).astype(np.float32) / 255.0
72
+ transform = frcnn_weights.transforms()
73
+ image_tensor = transform(Image.fromarray((img_array * 255).astype(np.uint8))).unsqueeze(0)
74
+
75
+ with torch.no_grad():
76
+ prediction = frcnn_model(image_tensor)[0]
77
+
78
+ boxes = prediction['boxes'].cpu().numpy()
79
+ labels = prediction['labels'].cpu().numpy()
80
+ scores = prediction['scores'].cpu().numpy()
81
+
82
+ valid_detections = sum(1 for score in scores if score >= threshold)
83
+
84
+ image_np = np.array(image)
85
+ plt.figure(figsize=(10, 10))
86
+ plt.imshow(image_np)
87
+ ax = plt.gca()
88
+
89
+ for box, label, score in zip(boxes, labels, scores):
90
+ if score >= threshold:
91
+ x1, y1, x2, y2 = box
92
+ ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, color='red', linewidth=2))
93
+ class_name = COCO_INSTANCE_CATEGORY_NAMES[label]
94
+ ax.text(x1, y1, f'{class_name}: {score:.2f}', bbox=dict(facecolor='yellow', alpha=0.5), fontsize=12, color='black')
95
+
96
+ plt.axis('off')
97
+ plt.tight_layout()
98
+ output_path = f"frcnn_output_{uuid.uuid4()}.png"
99
+ plt.savefig(output_path)
100
+ plt.close()
101
+ return output_path, valid_detections
102
+ except Exception as e:
103
+ error_img = Image.new('RGB', (400, 400), color='white')
104
+ plt.figure(figsize=(10, 10))
105
+ plt.imshow(error_img)
106
+ plt.text(0.5, 0.5, f"Error: {str(e)}", horizontalalignment='center', verticalalignment='center',
107
+ transform=plt.gca().transAxes, fontsize=12, wrap=True)
108
+ plt.axis('off')
109
+ error_path = f"frcnn_error_output_{uuid.uuid4()}.png"
110
+ plt.savefig(error_path)
111
+ plt.close()
112
+ return error_path, 0
113
+
114
+ def detect_objects_detr(image, threshold=0.9):
115
+ """Run DETR detection."""
116
+ if image is None:
117
+ blank_img = Image.new('RGB', (400, 400), color='white')
118
+ fig, ax = plt.subplots(1, figsize=(10, 10))
119
+ ax.imshow(blank_img)
120
+ ax.text(0.5, 0.5, "No image provided", horizontalalignment='center', verticalalignment='center',
121
+ transform=ax.transAxes, fontsize=20)
122
+ plt.axis('off')
123
+ output_path = f"detr_blank_output_{uuid.uuid4()}.png"
124
+ plt.savefig(output_path)
125
+ plt.close(fig)
126
+ return output_path, 0
127
+
128
+ try:
129
+ image = image.convert('RGB')
130
+ inputs = detr_processor(images=image, return_tensors="pt")
131
+ outputs = detr_model(**inputs)
132
+ target_sizes = torch.tensor([image.size[::-1]])
133
+ results = detr_processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=threshold)[0]
134
+
135
+ valid_detections = len(results["scores"])
136
+
137
+ fig, ax = plt.subplots(1, figsize=(10, 10))
138
+ ax.imshow(image)
139
+
140
+ for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
141
+ xmin, ymin, xmax, ymax = box.tolist()
142
+ ax.add_patch(patches.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, linewidth=2, edgecolor='red', facecolor='none'))
143
+ ax.text(xmin, ymin, f"{detr_model.config.id2label[label.item()]}: {round(score.item(), 2)}",
144
+ bbox=dict(facecolor='yellow', alpha=0.5), fontsize=8)
145
+
146
+ plt.axis('off')
147
+ output_path = f"detr_output_{uuid.uuid4()}.png"
148
+ plt.savefig(output_path)
149
+ plt.close(fig)
150
+ return output_path, valid_detections
151
+ except Exception as e:
152
+ error_img = Image.new('RGB', (400, 400), color='white')
153
+ fig, ax = plt.subplots(1, figsize=(10, 10))
154
+ ax.imshow(error_img)
155
+ ax.text(0.5, 0.5, f"Error: {str(e)}", horizontalalignment='center', verticalalignment='center',
156
+ transform=ax.transAxes, fontsize=12, wrap=True)
157
+ plt.axis('off')
158
+ error_path = f"detr_error_output_{uuid.uuid4()}.png"
159
+ plt.savefig(error_path)
160
+ plt.close(fig)
161
+ return error_path, 0
162
+
163
+ def detect_objects_maskrcnn(image, threshold=0.5):
164
+ """Run Mask R-CNN detection and segmentation."""
165
+ if image is None:
166
+ blank_img = Image.new('RGB', (400, 400), color='white')
167
+ plt.figure(figsize=(10, 10))
168
+ plt.imshow(blank_img)
169
+ plt.text(0.5, 0.5, "No image provided", horizontalalignment='center', verticalalignment='center',
170
+ transform=plt.gca().transAxes, fontsize=20)
171
+ plt.axis('off')
172
+ output_path = f"maskrcnn_blank_output_{uuid.uuid4()}.png"
173
+ plt.savefig(output_path)
174
+ plt.close()
175
+ return output_path, 0
176
+
177
+ try:
178
+ image = image.convert('RGB')
179
+ transform = torchvision.transforms.ToTensor()
180
+ img_tensor = transform(image).unsqueeze(0)
181
+
182
+ with torch.no_grad():
183
+ output = maskrcnn_model(img_tensor)[0]
184
+
185
+ masks = output['masks']
186
+ boxes = output['boxes'].cpu().numpy()
187
+ labels = output['labels'].cpu().numpy()
188
+ scores = output['scores'].cpu().numpy()
189
+
190
+ valid_detections = sum(1 for score in scores if score >= threshold)
191
+
192
+ image_np = np.array(image).copy()
193
+ fig, ax = plt.subplots(1, figsize=(10, 10))
194
+ ax.imshow(image_np)
195
+
196
+ for i in range(len(masks)):
197
+ if scores[i] >= threshold:
198
+ mask = masks[i, 0].cpu().numpy()
199
+ mask = mask > 0.5
200
+ color = np.random.rand(3)
201
+ colored_mask = np.zeros_like(image_np, dtype=np.uint8)
202
+ for c in range(3):
203
+ colored_mask[:, :, c] = mask * int(color[c] * 255)
204
+ image_np = np.where(mask[:, :, None], 0.5 * image_np + 0.5 * colored_mask, image_np).astype(np.uint8)
205
+
206
+ x1, y1, x2, y2 = boxes[i]
207
+ ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, color=color, linewidth=2))
208
+ label = COCO_INSTANCE_CATEGORY_NAMES[labels[i]]
209
+ ax.text(x1, y1, f"{label}: {scores[i]:.2f}", bbox=dict(facecolor='yellow', alpha=0.5), fontsize=10)
210
+
211
+ ax.imshow(image_np)
212
+ ax.axis('off')
213
+ output_path = f"maskrcnn_output_{uuid.uuid4()}.png"
214
+ plt.savefig(output_path, bbox_inches='tight', pad_inches=0)
215
+ plt.close()
216
+ return output_path, valid_detections
217
+ except Exception as e:
218
+ error_img = Image.new('RGB', (400, 400), color='white')
219
+ plt.figure(figsize=(10, 10))
220
+ plt.imshow(error_img)
221
+ plt.text(0.5, 0.5, f"Error: {str(e)}", horizontalalignment='center', verticalalignment='center',
222
+ transform=plt.gca().transAxes, fontsize=12, wrap=True)
223
+ plt.axis('off')
224
+ error_path = f"maskrcnn_error_output_{uuid.uuid4()}.png"
225
+ plt.savefig(error_path)
226
+ plt.close()
227
+ return error_path, 0
228
+
229
+ def detect_objects_mask2former(image, threshold=0.5):
230
+ """Run Mask2Former detection and segmentation."""
231
+ if image is None:
232
+ blank_img = Image.new('RGB', (400, 400), color='white')
233
+ plt.figure(figsize=(10, 10))
234
+ plt.imshow(blank_img)
235
+ plt.text(0.5, 0.5, "No image provided", horizontalalignment='center', verticalalignment='center',
236
+ transform=plt.gca().transAxes, fontsize=20)
237
+ plt.axis('off')
238
+ output_path = f"mask2former_blank_output_{uuid.uuid4()}.png"
239
+ plt.savefig(output_path)
240
+ plt.close()
241
+ return output_path, 0
242
+
243
+ try:
244
+ image = image.convert('RGB')
245
+ inputs = mask2former_processor(images=image, return_tensors="pt")
246
+ with torch.no_grad():
247
+ outputs = mask2former_model(**inputs)
248
+
249
+ results = mask2former_processor.post_process_instance_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
250
+ segmentation_map = results["segmentation"].cpu().numpy()
251
+ segments_info = results["segments_info"]
252
+
253
+ valid_detections = sum(1 for segment in segments_info if segment.get("score", 1.0) >= threshold)
254
+
255
+ image_np = np.array(image).copy()
256
+ overlay = image_np.copy()
257
+ fig, ax = plt.subplots(1, figsize=(10, 10))
258
+ ax.imshow(image_np)
259
+
260
+ for segment in segments_info:
261
+ score = segment.get("score", 1.0)
262
+ if score < threshold:
263
+ continue
264
+ segment_id = segment["id"]
265
+ label_id = segment["label_id"]
266
+ mask = segmentation_map == segment_id
267
+ color = np.random.rand(3)
268
+ overlay[mask] = (overlay[mask] * 0.5 + np.array(color) * 255 * 0.5).astype(np.uint8)
269
+
270
+ y_indices, x_indices = np.where(mask)
271
+ if len(x_indices) == 0 or len(y_indices) == 0:
272
+ continue
273
+ x1, x2 = x_indices.min(), x_indices.max()
274
+ y1, y2 = y_indices.min(), y_indices.max()
275
+
276
+ label_name = MASK2FORMER_COCO_NAMES.get(str(label_id), str(label_id))
277
+ ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, color=color, linewidth=2))
278
+ ax.text(x1, y1, f"{label_name}: {score:.2f}", bbox=dict(facecolor='yellow', alpha=0.5), fontsize=10)
279
+
280
+ ax.imshow(overlay)
281
+ ax.axis('off')
282
+ output_path = f"mask2former_output_{uuid.uuid4()}.png"
283
+ plt.savefig(output_path, bbox_inches='tight', pad_inches=0)
284
+ plt.close()
285
+ return output_path, valid_detections
286
+ except Exception as e:
287
+ error_img = Image.new('RGB', (400, 400), color='white')
288
+ plt.figure(figsize=(10, 10))
289
+ plt.imshow(error_img)
290
+ plt.text(0.5, 0.5, f"Error: {str(e)}", horizontalalignment='center', verticalalignment='center',
291
+ transform=plt.gca().transAxes, fontsize=12, wrap=True)
292
+ plt.axis('off')
293
+ error_path = f"mask2former_error_output_{uuid.uuid4()}.png"
294
+ plt.savefig(error_path)
295
+ plt.close()
296
+ return error_path, 0
297
+
298
+ def update_model_choices(category):
299
+ """Update model choices for prediction radio buttons based on selected category."""
300
+ if category == "Object Detection":
301
+ return gr.update(choices=["ConvNet (Faster R-CNN)", "Transformer (DETR)"], value=None, visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
302
+ elif category == "Object Segmentation":
303
+ return gr.update(choices=["ConvNet (Mask R-CNN)", "Transformer (Mask2Former)"], value=None, visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
304
+ return gr.update(choices=[], visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
305
+
306
+ def analyze_performance(image, category, user_opinion, frcnn_threshold=0.5, detr_threshold=0.9, maskrcnn_threshold=0.5, mask2former_threshold=0.5):
307
+ """Analyze and compare model performance for all models in the selected category."""
308
+ if image is None:
309
+ return "Please upload an image first.", None, None, None, None, "No analysis available."
310
+
311
+ frcnn_result = None
312
+ detr_result = None
313
+ maskrcnn_result = None
314
+ mask2former_result = None
315
+ frcnn_count = 0
316
+ detr_count = 0
317
+ maskrcnn_count = 0
318
+ mask2former_count = 0
319
+
320
+ if category == "Object Detection":
321
+ frcnn_result, frcnn_count = detect_objects_frcnn(image, frcnn_threshold)
322
+ detr_result, detr_count = detect_objects_detr(image, detr_threshold)
323
+ elif category == "Object Segmentation":
324
+ maskrcnn_result, maskrcnn_count = detect_objects_maskrcnn(image, maskrcnn_threshold)
325
+ mask2former_result, mask2former_count = detect_objects_mask2former(image, mask2former_threshold)
326
+
327
+ # Analyze performance
328
+ counts = {}
329
+ model_mapping = {
330
+ "ConvNet (Faster R-CNN)": "ConvNet (Faster R-CNN)",
331
+ "Transformer (DETR)": "Transformer (DETR)",
332
+ "ConvNet (Mask R-CNN)": "ConvNet (Mask R-CNN)",
333
+ "Transformer (Mask2Former)": "Transformer (Mask2Former)"
334
+ }
335
+ if category == "Object Detection":
336
+ counts = {
337
+ "ConvNet (Faster R-CNN)": frcnn_count,
338
+ "Transformer (DETR)": detr_count
339
+ }
340
+ elif category == "Object Segmentation":
341
+ counts = {
342
+ "ConvNet (Mask R-CNN)": maskrcnn_count,
343
+ "Transformer (Mask2Former)": mask2former_count
344
+ }
345
+
346
+ max_count = max(counts.values())
347
+ max_models = [model for model, count in counts.items() if count == max_count]
348
+
349
+ if len(max_models) == 1:
350
+ analysis = f"Result: {max_models[0]} performed best, identifying {max_count} objects.\n\n"
351
+ else:
352
+ analysis = f"Result: {', '.join(max_models)} performed equally well, each identifying {max_count} objects.\n\n"
353
+
354
+ if user_opinion:
355
+ analysis += f"You predicted that {user_opinion} would perform best.\n"
356
+ if user_opinion in max_models:
357
+ analysis += f"Congratulations, your prediction was correct!\n"
358
+ else:
359
+ analysis += f"Your prediction was not correct. {user_opinion} identified {counts[user_opinion]} objects, while {', '.join(max_models)} performed best with {max_count} objects. Please try again with a new image.\n"
360
+
361
+ if category == "Object Detection":
362
+ analysis += "\nConvNet (Faster R-CNN) is efficient and reliable for general object identification tasks. Transformer (DETR) excels in complex scenes by leveraging advanced context understanding."
363
+ elif category == "Object Segmentation":
364
+ analysis += "\nConvNet (Mask R-CNN) provides precise object outlines for detailed analysis. Transformer (Mask2Former) often outperforms in complex scenes due to its advanced architecture."
365
+
366
+ # Image-specific recommendation
367
+ img_array = np.array(image)
368
+ height, width = img_array.shape[:2]
369
+ pixel_variance = np.var(img_array)
370
+
371
+ if height * width > 1000 * 1000:
372
+ analysis += f"\n\nThis high-resolution image benefits from Transformer models, which excel in detailed and complex scenes."
373
+ if pixel_variance > 1000:
374
+ analysis += f"\n\nThis image has high complexity. Transformer models often provide superior results in such cases."
375
+ if height * width < 500 * 500:
376
+ analysis += f"\n\nFor smaller images, ConvNet models often deliver reliable results with lower computational demands."
377
+ if category == "Object Segmentation" and max_count > 0:
378
+ analysis += "\n\nFor detailed outlining tasks, Transformer (Mask2Former) may be preferable for complex scenes due to its advanced design."
379
+
380
+ # Enhanced result formatting
381
+ if user_opinion and user_opinion in max_models:
382
+ celebration = "๐ŸŽ‰โœจ"
383
+ analysis = analysis.replace("Congratulations", f"{celebration} EPIC WIN! {celebration}")
384
+ analysis = analysis.replace("!\n", "! ๐Ÿฅณ\n")
385
+ analysis += "\n\n๐ŸŒŸ You've mastered the AI showdown! ๐ŸŒŸ"
386
+ elif user_opinion:
387
+ analysis = analysis.replace("try again", "try again ๐Ÿ’ช")
388
+
389
+ # Convert to HTML with styling
390
+ html_analysis = f"""
391
+ <div class="{'celebrate' if user_opinion in max_models else ''}" style="margin: 15px 0;">
392
+ <h3 style='color: {"#4CAF50" if user_opinion in max_models else "#f44336"}; margin-bottom: 15px;'>
393
+ {"๐Ÿ† " + max_models[0] + " Dominates!" if len(max_models) == 1 else "โš”๏ธ Tie Battle!"}
394
+ </h3>
395
+ <div style="background: var(--background-fill-primary); padding: 20px; border-radius: 10px;
396
+ white-space: pre-wrap; overflow-wrap: break-word; color: var(--text-color);">
397
+ {analysis}
398
+ </div>
399
+ </div>
400
+ """
401
+ return "Analysis complete!", frcnn_result, detr_result, maskrcnn_result, mask2former_result, html_analysis
402
+
403
+ # Create Gradio interface with enhanced design
404
+ with gr.Blocks(title="AI Vision Showdown", theme=gr.themes.Default(primary_hue="emerald", secondary_hue="blue")) as app:
405
+ gr.Markdown("""
406
+ # ๐ŸŽฏ AI Vision Showdown: ConvNets vs Transformers
407
+ ### ๐Ÿค– Battle of the algorithms! Upload an image and predict which AI will dominate!
408
+ """)
409
+
410
+ # Enhanced CSS
411
+ gr.HTML("""
412
+ <style>
413
+ @keyframes celebrate {
414
+ 0% { transform: rotate(0deg); }
415
+ 25% { transform: rotate(5deg); }
416
+ 50% { transform: rotate(-5deg); }
417
+ 75% { transform: rotate(5deg); }
418
+ 100% { transform: rotate(0deg); }
419
+ }
420
+ .celebrate { animation: celebrate 0.5s ease-in-out; }
421
+ .battle-card {
422
+ border-radius: 15px;
423
+ padding: 20px;
424
+ margin: 10px 0;
425
+ background: var(--background-fill-primary);
426
+ border: 1px solid var(--border-color-primary);
427
+ }
428
+ .analysis-box {
429
+ background: var(--background-fill-secondary) !important;
430
+ color: var(--text-color) !important;
431
+ padding: 20px;
432
+ border-radius: 10px;
433
+ white-space: pre-wrap;
434
+ overflow-wrap: break-word;
435
+ }
436
+ .loading-status {
437
+ padding: 15px;
438
+ background: var(--background-fill-secondary);
439
+ border-radius: 8px;
440
+ margin: 10px 0;
441
+ text-align: center;
442
+ font-weight: bold;
443
+ }
444
+ </style>
445
+ """)
446
+
447
+ # State variables
448
+ image_state = gr.State(None)
449
+ category_state = gr.State(None)
450
+ loading_status = gr.HTML(visible=False)
451
+
452
+ # Top Section: Inputs
453
+ with gr.Row(variant="battle-card"):
454
+ with gr.Column(scale=1, min_width=300):
455
+ gr.Markdown("## ๐Ÿ“ค Image Upload Zone")
456
+ image_input = gr.Image(type="pil", label="Drag & Drop Your Challenge Image")
457
+ upload_button = gr.Button("๐Ÿ”ผ Upload Challenge Image", variant="primary")
458
+
459
+ with gr.Column(scale=1, min_width=300):
460
+ with gr.Group(visible=False) as prediction_selection:
461
+ gr.Markdown("## ๐Ÿ”ฎ Prediction Arena")
462
+ category_choice = gr.Radio(
463
+ choices=["Object Detection", "Object Segmentation"],
464
+ label="โš”๏ธ Select Battle Ground",
465
+ value=None,
466
+ elem_classes="battle-card"
467
+ )
468
+ user_opinion = gr.Radio(
469
+ choices=[],
470
+ label="๐Ÿน Predict the Victor",
471
+ value=None,
472
+ visible=False,
473
+ elem_classes="battle-card"
474
+ )
475
+
476
+ # Enhanced threshold controls
477
+ with gr.Accordion("๐ŸŽš๏ธ Advanced Battle Parameters", open=False):
478
+ frcnn_threshold = gr.Slider(
479
+ minimum=0.0, maximum=1.0, value=0.5, step=0.05,
480
+ label="Faster R-CNN Confidence (Speed Demon ๐ŸŽ๏ธ)",
481
+ visible=False
482
+ )
483
+ detr_threshold = gr.Slider(
484
+ minimum=0.0, maximum=1.0, value=0.9, step=0.05,
485
+ label="DETR Confidence (Attention Master ๐Ÿ”)",
486
+ visible=False
487
+ )
488
+ maskrcnn_threshold = gr.Slider(
489
+ minimum=0.0, maximum=1.0, value=0.5, step=0.05,
490
+ label="Mask R-CNN Confidence (Precision Expert โœ‚๏ธ)",
491
+ visible=False
492
+ )
493
+ mask2former_threshold = gr.Slider(
494
+ minimum=0.0, maximum=1.0, value=0.5, step=0.05,
495
+ label="Mask2Former Confidence (Transformer Champ ๐Ÿค–)",
496
+ visible=False
497
+ )
498
+
499
+ detect_button = gr.Button("โš”๏ธ Start Showdown", variant="primary")
500
+
501
+ # Results Section
502
+ with gr.Group(visible=False) as outputs_panel:
503
+ gr.Markdown("## ๐Ÿ“Š Battle Results")
504
+ with gr.Tabs():
505
+ with gr.TabItem("Object Detection Warriors", visible=False) as detection_tab:
506
+ with gr.Row():
507
+ frcnn_result = gr.Image(type="filepath", label="๐Ÿš€ Faster R-CNN (ConvNet Champion)", elem_classes="battle-card")
508
+ detr_result = gr.Image(type="filepath", label="๐Ÿง  DETR (Transformer Visionary)", elem_classes="battle-card")
509
+
510
+ with gr.TabItem("Segmentation Gladiators", visible=False) as segmentation_tab:
511
+ with gr.Row():
512
+ maskrcnn_result = gr.Image(type="filepath", label="โš”๏ธ Mask R-CNN (Pixel Perfect)", elem_classes="battle-card")
513
+ mask2former_result = gr.Image(type="filepath", label="๐Ÿ›ก๏ธ Mask2Former (Segmentation Master)", elem_classes="battle-card")
514
+
515
+ # Analysis Section
516
+ with gr.Group(visible=False) as results_panel:
517
+ gr.Markdown("## ๐Ÿ† Battle Report")
518
+ analysis_output = gr.HTML(label="Victory Analysis", elem_classes="battle-card")
519
+ restart_button = gr.Button("๐Ÿ”„ New Challenge", variant="secondary")
520
+
521
+ # Upload button click event
522
+ def upload_image(img):
523
+ if img is None:
524
+ return None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
525
+ return img, gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
526
+
527
+ upload_button.click(
528
+ fn=upload_image,
529
+ inputs=[image_input],
530
+ outputs=[image_state, prediction_selection, outputs_panel, results_panel]
531
+ )
532
+
533
+ # Category selection event
534
+ def update_prediction_options(category):
535
+ if category is None:
536
+ return None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
537
+ model_update, frcnn_vis, detr_vis, maskrcnn_vis, mask2former_vis = update_model_choices(category)
538
+ return category, model_update, frcnn_vis, detr_vis, maskrcnn_vis, mask2former_vis
539
+
540
+ category_choice.change(
541
+ fn=update_prediction_options,
542
+ inputs=[category_choice],
543
+ outputs=[category_state, user_opinion, frcnn_threshold, detr_threshold, maskrcnn_threshold, mask2former_threshold]
544
+ )
545
+
546
+ # Detect button click event
547
+ def run_detection(image, category, user_opinion, frcnn_threshold, detr_threshold, maskrcnn_threshold, mask2former_threshold):
548
+ if not category or not user_opinion:
549
+ return "Please select a category and prediction.", None, None, None, None, "No analysis available.", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
550
+
551
+ def analyze_with_progress(progress=gr.Progress()):
552
+ progress(0.1, desc="โš™๏ธ Models are gearing up...")
553
+ result = analyze_performance(image, category, user_opinion, frcnn_threshold, detr_threshold, maskrcnn_threshold, mask2former_threshold)
554
+ progress(1.0, desc="โœ… Battle complete!")
555
+ return result
556
+
557
+ try:
558
+ message, frcnn_result_img, detr_result_img, maskrcnn_result_img, mask2former_result_img, html_analysis = analyze_with_progress()
559
+ return [
560
+ message,
561
+ gr.update(value=frcnn_result_img, visible=category == "Object Detection"),
562
+ gr.update(value=detr_result_img, visible=category == "Object Detection"),
563
+ gr.update(value=maskrcnn_result_img, visible=category == "Object Segmentation"),
564
+ gr.update(value=mask2former_result_img, visible=category == "Object Segmentation"),
565
+ html_analysis,
566
+ gr.update(visible=True),
567
+ gr.update(visible=True),
568
+ gr.update(visible=category == "Object Detection"),
569
+ gr.update(visible=category == "Object Segmentation"),
570
+ gr.update(visible=False)
571
+ ]
572
+ except Exception as e:
573
+ return [f"Error: {str(e)}"] + [gr.update()]*9 + [gr.update(visible=False)]
574
+
575
+ detect_button.click(
576
+ fn=run_detection,
577
+ inputs=[image_state, category_state, user_opinion, frcnn_threshold, detr_threshold, maskrcnn_threshold, mask2former_threshold],
578
+ outputs=[gr.Textbox(visible=False), frcnn_result, detr_result, maskrcnn_result, mask2former_result,
579
+ analysis_output, outputs_panel, results_panel, detection_tab, segmentation_tab, loading_status]
580
+ )
581
+
582
+ # Restart button click event
583
+ def restart():
584
+ return None, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
585
+
586
+ restart_button.click(
587
+ fn=restart,
588
+ inputs=[],
589
+ outputs=[image_state, category_state, prediction_selection, outputs_panel, results_panel, frcnn_result, detr_result, maskrcnn_result, mask2former_result, analysis_output, user_opinion, category_choice, detection_tab, segmentation_tab]
590
+ )
591
+
592
+ # Example images
593
+ example_images = [
594
+ os.path.join(os.getcwd(), "TEST_IMG_1.jpg"),
595
+ os.path.join(os.getcwd(), "TEST_IMG_2.JPG"),
596
+ os.path.join(os.getcwd(), "TEST_IMG_3.jpg"),
597
+ os.path.join(os.getcwd(), "TEST_IMG_4.jpg")
598
+ ]
599
+
600
+ valid_examples = [img for img in example_images if os.path.exists(img)]
601
+
602
+ if valid_examples:
603
+ gr.Markdown("## ๐Ÿงฉ Try These Example Challenges:")
604
+ gr.Examples(
605
+ examples=valid_examples,
606
+ inputs=image_input,
607
+ examples_per_page=4,
608
+ label=""
609
+ )
610
+
611
+ if __name__ == "__main__":
612
+ app.launch(debug=True)