vericudebuget commited on
Commit
e1e2228
·
verified ·
1 Parent(s): 3b920f3

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +261 -0
app.py ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # app.py
2
+
3
+ import os
4
+ import gradio as gr
5
+ import torch
6
+ import torch.nn as nn
7
+ from PIL import Image
8
+ from torchvision.transforms import ToTensor
9
+ import numpy as np
10
+ from concurrent.futures import ThreadPoolExecutor
11
+ from skimage import exposure
12
+
13
+ # --- Model Definition ---
14
+ class DenoisingModel(nn.Module):
15
+ def __init__(self):
16
+ super(DenoisingModel, self).__init__()
17
+ self.enc1 = nn.Sequential(
18
+ nn.Conv2d(3, 64, 3, padding=1),
19
+ nn.ReLU(),
20
+ nn.Conv2d(64, 64, 3, padding=1),
21
+ nn.ReLU()
22
+ )
23
+ self.pool1 = nn.MaxPool2d(2, 2)
24
+
25
+ self.up1 = nn.ConvTranspose2d(64, 64, 2, stride=2)
26
+ self.dec1 = nn.Sequential(
27
+ nn.Conv2d(64, 64, 3, padding=1),
28
+ nn.ReLU(),
29
+ nn.Conv2d(64, 3, 3, padding=1)
30
+ )
31
+
32
+ def forward(self, x):
33
+ e1 = self.enc1(x)
34
+ p1 = self.pool1(e1)
35
+ u1 = self.up1(p1)
36
+ d1 = self.dec1(u1)
37
+ return d1
38
+
39
+ # --- Denoising Patch Function ---
40
+ def denoise_patch(model, patch):
41
+ transform = ToTensor()
42
+ input_patch = transform(patch).unsqueeze(0)
43
+
44
+ with torch.no_grad():
45
+ output_patch = model(input_patch)
46
+
47
+ denoised_patch = output_patch.squeeze(0).permute(1, 2, 0).numpy() * 255
48
+ denoised_patch = np.clip(denoised_patch, 0, 255).astype(np.uint8)
49
+
50
+ original_patch = np.array(patch)
51
+ very_bright_mask = original_patch > 240
52
+ bright_mask = (original_patch > 220) & (original_patch <= 240)
53
+
54
+ denoised_patch[very_bright_mask] = original_patch[very_bright_mask]
55
+
56
+ blend_factor = 0.7
57
+ denoised_patch[bright_mask] = (
58
+ blend_factor * original_patch[bright_mask] +
59
+ (1 - blend_factor) * denoised_patch[bright_mask]
60
+ )
61
+
62
+ return denoised_patch
63
+
64
+ # --- Main Denoise Image Function (Dynamically uses all CPU cores) ---
65
+ def denoise_image(image: Image.Image, model_path: str, patch_size: int = 256, overlap: int = 32) -> Image.Image:
66
+ # Dynamically set the number of threads based on available CPU cores
67
+ num_threads = os.cpu_count()
68
+ if num_threads is None: # Fallback in case os.cpu_count() returns None
69
+ num_threads = 2 # Default to 2 if cannot detect
70
+ print(f"Utilizing {num_threads} CPU cores for parallel processing.")
71
+
72
+ # Load the model
73
+ model = DenoisingModel()
74
+ # Ensure model is loaded on CPU, crucial for Hugging Face Spaces free tier
75
+ checkpoint = torch.load(model_path, map_location=torch.device('cpu'))
76
+ model.load_state_dict(checkpoint['model_state_dict'])
77
+ model.eval() # Set model to evaluation mode
78
+
79
+ # Process image (convert to RGB, get dimensions)
80
+ image = image.convert("RGB")
81
+ width, height = image.size
82
+
83
+ # Calculate padding needed for full patches
84
+ pad_right = (patch_size - (width % patch_size)) % patch_size if width % patch_size != 0 else 0
85
+ pad_bottom = (patch_size - (height % patch_size)) % patch_size if height % patch_size != 0 else 0
86
+
87
+ padded_width = width + pad_right
88
+ padded_height = height + pad_bottom
89
+
90
+ # Create padded image with reflection padding
91
+ padded_image = Image.new("RGB", (padded_width, padded_height))
92
+ padded_image.paste(image, (0, 0)) # Paste original image
93
+
94
+ # Fill borders with reflected content
95
+ if pad_right > 0:
96
+ right_border = image.crop((width - pad_right, 0, width, height))
97
+ padded_image.paste(right_border.transpose(Image.FLIP_LEFT_RIGHT), (width, 0))
98
+ if pad_bottom > 0:
99
+ bottom_border = image.crop((0, height - pad_bottom, width, height))
100
+ padded_image.paste(bottom_border.transpose(Image.FLIP_TOP_BOTTOM), (0, height))
101
+ if pad_right > 0 and pad_bottom > 0:
102
+ corner = image.crop((width - pad_right, height - pad_bottom, width, height))
103
+ padded_image.paste(corner.transpose(Image.FLIP_LEFT_RIGHT).transpose(Image.FLIP_TOP_BOTTOM),
104
+ (width, height))
105
+
106
+ # Generate patches and their positions for processing
107
+ patches = []
108
+ positions = []
109
+ # Adjust ranges to ensure full patch sizes near borders using min()
110
+ for i in range(0, padded_height, patch_size - overlap):
111
+ for j in range(0, padded_width, patch_size - overlap):
112
+ # Ensure patch doesn't go out of bounds for the last patches
113
+ actual_i = min(i, padded_height - patch_size)
114
+ actual_j = min(j, padded_width - patch_size)
115
+ patch = padded_image.crop((actual_j, actual_i, actual_j + patch_size, actual_i + patch_size))
116
+ patches.append(patch)
117
+ positions.append((actual_i, actual_j))
118
+
119
+ # Process patches in parallel using ThreadPoolExecutor
120
+ with ThreadPoolExecutor(max_workers=num_threads) as executor:
121
+ denoised_patches = list(executor.map(lambda p: denoise_patch(model, p), patches))
122
+
123
+ # Reconstruct the image from denoised patches using blending
124
+ denoised_image_np = np.zeros((padded_height, padded_width, 3), dtype=np.float32)
125
+ weight_map = np.zeros((padded_height, padded_width), dtype=np.float32)
126
+
127
+ for (i, j), denoised_patch in zip(positions, denoised_patches):
128
+ patch_height, patch_width, _ = denoised_patch.shape
129
+ patch_weights = np.ones((patch_height, patch_width), dtype=np.float32)
130
+
131
+ # Apply smooth blending weights at overlaps
132
+ if i > 0:
133
+ patch_weights[:overlap, :] *= np.linspace(0, 1, overlap)[:, np.newaxis]
134
+ if j > 0:
135
+ patch_weights[:, :overlap] *= np.linspace(0, 1, overlap)[np.newaxis, :]
136
+ if i + patch_height < padded_height: # Check if it's not the last row
137
+ patch_weights[-overlap:, :] *= np.linspace(1, 0, overlap)[:, np.newaxis]
138
+ if j + patch_width < padded_width: # Check if it's not the last column
139
+ patch_weights[:, -overlap:] *= np.linspace(1, 0, overlap)[np.newaxis, :]
140
+
141
+ # Clip values and apply gamma correction before blending
142
+ denoised_patch_processed = exposure.adjust_gamma(np.clip(denoised_patch, 0, 255), gamma=1.0)
143
+
144
+ denoised_image_np[i:i + patch_height, j:j + patch_width] += (
145
+ denoised_patch_processed * patch_weights[:, :, np.newaxis]
146
+ )
147
+ weight_map[i:i + patch_height, j:j + patch_width] += patch_weights
148
+
149
+ # Normalize by weights to get the final blended image
150
+ mask = weight_map > 0
151
+ denoised_image_np[mask] /= weight_map[mask, np.newaxis]
152
+
153
+ # Crop back to original dimensions and finalize
154
+ final_image_np = denoised_image_np[:height, :width]
155
+ final_image_np = np.clip(final_image_np, 0, 255).astype(np.uint8)
156
+
157
+ return Image.fromarray(final_image_np)
158
+
159
+ # --- Gradio Interface Setup ---
160
+
161
+ # Function to find available models in the 'models' directory
162
+ def get_available_models():
163
+ model_dir = "models"
164
+ if not os.path.exists(model_dir):
165
+ print(f"Warning: '{model_dir}' directory not found. No models will be available.")
166
+ return []
167
+
168
+ # Filter for .pth or .pt files
169
+ models = [f for f in os.listdir(model_dir) if f.endswith(".pth") or f.endswith(".pt")]
170
+ if not models:
171
+ print(f"Warning: No .pth or .pt model files found in '{model_dir}'.")
172
+ return models
173
+
174
+ # The main Gradio function that orchestrates the denoising process
175
+ def gradio_interface(input_image: np.ndarray, model_name: str, progress=gr.Progress(track_tqdm=True)) -> Image.Image:
176
+ if input_image is None:
177
+ raise gr.Error("Please upload an image to denoise.")
178
+ if not model_name:
179
+ raise gr.Error("Please select a model from the dropdown.")
180
+
181
+ # Convert numpy input image from Gradio to PIL Image for processing
182
+ pil_image = Image.fromarray(input_image)
183
+
184
+ # Construct full model path
185
+ model_path = os.path.join("models", model_name)
186
+
187
+ print(f"Starting denoising process with model: '{model_name}'")
188
+ progress(0, desc=f"Loading model: {model_name}...")
189
+
190
+ # Call the core denoising function
191
+ denoised_pil_image = denoise_image(pil_image, model_path)
192
+
193
+ print("Denoising completed successfully.")
194
+ progress(1, desc="Done!")
195
+
196
+ return denoised_pil_image
197
+
198
+ # Get initial list of models for the dropdown
199
+ available_models = get_available_models()
200
+
201
+ # Define the Gradio interface using gr.Blocks for a structured layout
202
+ with gr.Blocks(theme=gr.themes.Soft(), title="Image Denoiser") as demo:
203
+ gr.Markdown(
204
+ """
205
+ # 🖼️ Universal Image Denoiser
206
+ Upload an image and select a pre-trained model to effectively remove noise.
207
+ """
208
+ )
209
+ with gr.Row():
210
+ with gr.Column(scale=1):
211
+ input_img = gr.Image(type="numpy", label="Input Image", value=None) # Set initial value to None
212
+
213
+ # Dropdown for model selection
214
+ model_dropdown = gr.Dropdown(
215
+ choices=available_models,
216
+ label="Select Denoising Model",
217
+ value=available_models[0] if available_models else None, # Pre-select first model if available
218
+ info="Place your .pth or .pt model files in the 'models/' directory."
219
+ )
220
+
221
+ denoise_button = gr.Button("Denoise Image", variant="primary")
222
+ gr.Markdown(
223
+ """
224
+ **Note:** Processing large images can take time. The app utilizes all available CPU cores for faster denoising.
225
+ """
226
+ )
227
+ with gr.Column(scale=1):
228
+ output_img = gr.Image(type="pil", label="Denoised Image")
229
+
230
+ # Examples section to demonstrate usage
231
+ if available_models and os.path.exists("examples"):
232
+ example_images = []
233
+ # Find some example images (e.g., .png, .jpg)
234
+ for fname in os.listdir("examples"):
235
+ if fname.lower().endswith(('.png', '.jpg', '.jpeg')):
236
+ example_images.append(os.path.join("examples", fname))
237
+
238
+ # Create examples only if there are models AND example images
239
+ if example_images:
240
+ gr.Examples(
241
+ examples=[[img_path, available_models[0]] for img_path in example_images],
242
+ inputs=[input_img, model_dropdown],
243
+ outputs=output_img,
244
+ fn=gradio_interface,
245
+ cache_examples=True # Speeds up example loading
246
+ )
247
+ else:
248
+ gr.Markdown("*(No example images found in 'examples/' directory)*")
249
+ else:
250
+ gr.Markdown("*(No models or example images found to populate examples)*")
251
+
252
+
253
+ # Connect the button click to the denoising function
254
+ denoise_button.click(
255
+ fn=gradio_interface,
256
+ inputs=[input_img, model_dropdown],
257
+ outputs=output_img
258
+ )
259
+
260
+ if __name__ == "__main__":
261
+ demo.launch()