Spaces:
Sleeping
Sleeping
vtrv.vls
commited on
Commit
·
01af800
1
Parent(s):
7be9d95
Arena test
Browse files
app.py
CHANGED
|
@@ -3,21 +3,33 @@ import argparse
|
|
| 3 |
import os
|
| 4 |
|
| 5 |
from utils import generate
|
|
|
|
| 6 |
from constants import css, js_code, js_light
|
| 7 |
|
| 8 |
MERA_table = None
|
|
|
|
| 9 |
|
| 10 |
-
def
|
| 11 |
res = generate(content,'auth_token.json')
|
| 12 |
return res
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
def tab_arena():
|
| 15 |
-
gradio.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
# arena.launch()
|
| 17 |
|
| 18 |
with open("test.md", "r") as f:
|
| 19 |
TEST_MD = f.read()
|
| 20 |
|
|
|
|
| 21 |
|
| 22 |
def build_demo():
|
| 23 |
# global original_dfs, available_models, gpt4t_dfs, haiku_dfs, llama_dfs
|
|
|
|
| 3 |
import os
|
| 4 |
|
| 5 |
from utils import generate
|
| 6 |
+
from models import get_tiny_llama, response_tiny_llama
|
| 7 |
from constants import css, js_code, js_light
|
| 8 |
|
| 9 |
MERA_table = None
|
| 10 |
+
TINY_LLAMA = get_tiny_llama()
|
| 11 |
|
| 12 |
+
def giga_gen(content):
|
| 13 |
res = generate(content,'auth_token.json')
|
| 14 |
return res
|
| 15 |
|
| 16 |
+
def tiny_gen(content):
|
| 17 |
+
res = response_tiny_llama(TINY_LLAMA, content)
|
| 18 |
+
return res
|
| 19 |
+
|
| 20 |
def tab_arena():
|
| 21 |
+
with gradio.Row():
|
| 22 |
+
with gradio.Column():
|
| 23 |
+
gradio.Interface(fn=giga_gen, inputs="text", outputs="text", allow_flagging=False, title='Giga') # arena =
|
| 24 |
+
with gradio.Column():
|
| 25 |
+
gradio.Interface(fn=tiny_gen, inputs="text", outputs="text", allow_flagging=False, title='TinyLlama') # arena =
|
| 26 |
+
|
| 27 |
# arena.launch()
|
| 28 |
|
| 29 |
with open("test.md", "r") as f:
|
| 30 |
TEST_MD = f.read()
|
| 31 |
|
| 32 |
+
available_models = ["GigaChat", ""] # list(model_info.keys())
|
| 33 |
|
| 34 |
def build_demo():
|
| 35 |
# global original_dfs, available_models, gpt4t_dfs, haiku_dfs, llama_dfs
|
models.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
|
| 4 |
+
def get_tiny_llama():
|
| 5 |
+
pipe = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", torch_dtype=torch.float16, device_map="auto")
|
| 6 |
+
return pipe
|
| 7 |
+
|
| 8 |
+
def response_tiny_llama(
|
| 9 |
+
pipe=None,
|
| 10 |
+
content="How many helicopters can a human eat in one sitting?"
|
| 11 |
+
):
|
| 12 |
+
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
|
| 13 |
+
messages = [
|
| 14 |
+
{
|
| 15 |
+
"role": "system",
|
| 16 |
+
"content": "You are a friendly chatbot who always responds in the style of a pirate",
|
| 17 |
+
},
|
| 18 |
+
{"role": "user", "content": content},
|
| 19 |
+
]
|
| 20 |
+
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 21 |
+
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
| 22 |
+
|
| 23 |
+
return outputs[0]['generated_text']
|